Cargando…
Fluorescent-Tagged Antiscalants—The New Materials for Scale Inhibition Mechanism Studies, Antiscalant Traceability and Antiscaling Efficacy Optimization during CaCO(3) and CaSO(4)·2H(2)O Scale Formation
Equipment scaling leads to reduced production efficiency in a wide range of industrial applications worldwide. Various antiscaling agents are currently commonly used to mitigate this problem. However, irrespective of their long and successful application in water treatment technologies, little is kn...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965619/ https://www.ncbi.nlm.nih.gov/pubmed/36834501 http://dx.doi.org/10.3390/ijms24043087 |
_version_ | 1784896810179887104 |
---|---|
author | Tkachenko, Sergey Trukhina, Maria Ryabova, Anastasia Oshchepkov, Maxim Kamagurov, Semen Popov, Konstantin |
author_facet | Tkachenko, Sergey Trukhina, Maria Ryabova, Anastasia Oshchepkov, Maxim Kamagurov, Semen Popov, Konstantin |
author_sort | Tkachenko, Sergey |
collection | PubMed |
description | Equipment scaling leads to reduced production efficiency in a wide range of industrial applications worldwide. Various antiscaling agents are currently commonly used to mitigate this problem. However, irrespective of their long and successful application in water treatment technologies, little is known about the mechanisms of scale inhibition, particularly the localization of scale inhibitors on scale deposits. The lack of such knowledge is a limiting factor in the development of applications for antiscalants. Meanwhile, fluorescent fragments integrated into scale inhibitor molecules have provided a successful solution to the problem. The focus of this study is, therefore, on the synthesis and investigation of a novel fluorescent antiscalant: (2-(6-morpholino-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)yl)ethylazanediyl)bis(methylenephosphonic acid) (ADMP-F) which is an analog of the commercial antiscalant: aminotris(methylenephosphonic acid) (ATMP). ADMP-F has been found to effectively control the precipitation of CaCO(3) and CaSO(4) in solution and is a promising tracer for organophosphonate scale inhibitors. ADMP-F was compared with two other fluorescent antiscalants—polyacrylate (PAA-F1) and bisphosphonate (HEDP-F)—and was found to be highly effective: PAA-F1 > ADMP-F >> HEDP-F (CaCO(3)) and PAA-F1 > ADMP-F > HEDP-F (CaSO(4)·2H(2)O). The visualization of the antiscalants on the deposits provides unique information on their location and reveals differences in the “antiscalant-deposit” interactions for scale inhibitors of different natures. For these reasons, a number of important refinements to the mechanisms of scale inhibition are proposed. |
format | Online Article Text |
id | pubmed-9965619 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99656192023-02-26 Fluorescent-Tagged Antiscalants—The New Materials for Scale Inhibition Mechanism Studies, Antiscalant Traceability and Antiscaling Efficacy Optimization during CaCO(3) and CaSO(4)·2H(2)O Scale Formation Tkachenko, Sergey Trukhina, Maria Ryabova, Anastasia Oshchepkov, Maxim Kamagurov, Semen Popov, Konstantin Int J Mol Sci Article Equipment scaling leads to reduced production efficiency in a wide range of industrial applications worldwide. Various antiscaling agents are currently commonly used to mitigate this problem. However, irrespective of their long and successful application in water treatment technologies, little is known about the mechanisms of scale inhibition, particularly the localization of scale inhibitors on scale deposits. The lack of such knowledge is a limiting factor in the development of applications for antiscalants. Meanwhile, fluorescent fragments integrated into scale inhibitor molecules have provided a successful solution to the problem. The focus of this study is, therefore, on the synthesis and investigation of a novel fluorescent antiscalant: (2-(6-morpholino-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)yl)ethylazanediyl)bis(methylenephosphonic acid) (ADMP-F) which is an analog of the commercial antiscalant: aminotris(methylenephosphonic acid) (ATMP). ADMP-F has been found to effectively control the precipitation of CaCO(3) and CaSO(4) in solution and is a promising tracer for organophosphonate scale inhibitors. ADMP-F was compared with two other fluorescent antiscalants—polyacrylate (PAA-F1) and bisphosphonate (HEDP-F)—and was found to be highly effective: PAA-F1 > ADMP-F >> HEDP-F (CaCO(3)) and PAA-F1 > ADMP-F > HEDP-F (CaSO(4)·2H(2)O). The visualization of the antiscalants on the deposits provides unique information on their location and reveals differences in the “antiscalant-deposit” interactions for scale inhibitors of different natures. For these reasons, a number of important refinements to the mechanisms of scale inhibition are proposed. MDPI 2023-02-04 /pmc/articles/PMC9965619/ /pubmed/36834501 http://dx.doi.org/10.3390/ijms24043087 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tkachenko, Sergey Trukhina, Maria Ryabova, Anastasia Oshchepkov, Maxim Kamagurov, Semen Popov, Konstantin Fluorescent-Tagged Antiscalants—The New Materials for Scale Inhibition Mechanism Studies, Antiscalant Traceability and Antiscaling Efficacy Optimization during CaCO(3) and CaSO(4)·2H(2)O Scale Formation |
title | Fluorescent-Tagged Antiscalants—The New Materials for Scale Inhibition Mechanism Studies, Antiscalant Traceability and Antiscaling Efficacy Optimization during CaCO(3) and CaSO(4)·2H(2)O Scale Formation |
title_full | Fluorescent-Tagged Antiscalants—The New Materials for Scale Inhibition Mechanism Studies, Antiscalant Traceability and Antiscaling Efficacy Optimization during CaCO(3) and CaSO(4)·2H(2)O Scale Formation |
title_fullStr | Fluorescent-Tagged Antiscalants—The New Materials for Scale Inhibition Mechanism Studies, Antiscalant Traceability and Antiscaling Efficacy Optimization during CaCO(3) and CaSO(4)·2H(2)O Scale Formation |
title_full_unstemmed | Fluorescent-Tagged Antiscalants—The New Materials for Scale Inhibition Mechanism Studies, Antiscalant Traceability and Antiscaling Efficacy Optimization during CaCO(3) and CaSO(4)·2H(2)O Scale Formation |
title_short | Fluorescent-Tagged Antiscalants—The New Materials for Scale Inhibition Mechanism Studies, Antiscalant Traceability and Antiscaling Efficacy Optimization during CaCO(3) and CaSO(4)·2H(2)O Scale Formation |
title_sort | fluorescent-tagged antiscalants—the new materials for scale inhibition mechanism studies, antiscalant traceability and antiscaling efficacy optimization during caco(3) and caso(4)·2h(2)o scale formation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965619/ https://www.ncbi.nlm.nih.gov/pubmed/36834501 http://dx.doi.org/10.3390/ijms24043087 |
work_keys_str_mv | AT tkachenkosergey fluorescenttaggedantiscalantsthenewmaterialsforscaleinhibitionmechanismstudiesantiscalanttraceabilityandantiscalingefficacyoptimizationduringcaco3andcaso42h2oscaleformation AT trukhinamaria fluorescenttaggedantiscalantsthenewmaterialsforscaleinhibitionmechanismstudiesantiscalanttraceabilityandantiscalingefficacyoptimizationduringcaco3andcaso42h2oscaleformation AT ryabovaanastasia fluorescenttaggedantiscalantsthenewmaterialsforscaleinhibitionmechanismstudiesantiscalanttraceabilityandantiscalingefficacyoptimizationduringcaco3andcaso42h2oscaleformation AT oshchepkovmaxim fluorescenttaggedantiscalantsthenewmaterialsforscaleinhibitionmechanismstudiesantiscalanttraceabilityandantiscalingefficacyoptimizationduringcaco3andcaso42h2oscaleformation AT kamagurovsemen fluorescenttaggedantiscalantsthenewmaterialsforscaleinhibitionmechanismstudiesantiscalanttraceabilityandantiscalingefficacyoptimizationduringcaco3andcaso42h2oscaleformation AT popovkonstantin fluorescenttaggedantiscalantsthenewmaterialsforscaleinhibitionmechanismstudiesantiscalanttraceabilityandantiscalingefficacyoptimizationduringcaco3andcaso42h2oscaleformation |