Cargando…
DoubleSG-DTA: Deep Learning for Drug Discovery: Case Study on the Non-Small Cell Lung Cancer with EGFR(T790M) Mutation
Drug–targeted therapies are promising approaches to treating tumors, and research on receptor–ligand interactions for discovering high-affinity targeted drugs has been accelerating drug development. This study presents a mechanism-driven deep learning-based computational model to learn double drug s...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965659/ https://www.ncbi.nlm.nih.gov/pubmed/36839996 http://dx.doi.org/10.3390/pharmaceutics15020675 |
Sumario: | Drug–targeted therapies are promising approaches to treating tumors, and research on receptor–ligand interactions for discovering high-affinity targeted drugs has been accelerating drug development. This study presents a mechanism-driven deep learning-based computational model to learn double drug sequences, protein sequences, and drug graphs to project drug–target affinities (DTAs), which was termed the DoubleSG-DTA. We deployed lightweight graph isomorphism networks to aggregate drug graph representations and discriminate between molecular structures, and stacked multilayer squeeze-and-excitation networks to selectively enhance spatial features of drug and protein sequences. What is more, cross-multi-head attentions were constructed to further model the non-covalent molecular docking behavior. The multiple cross-validation experimental evaluations on various datasets indicated that DoubleSG-DTA consistently outperformed all previously reported works. To showcase the value of DoubleSG-DTA, we applied it to generate promising hit compounds of Non-Small Cell Lung Cancer harboring [Formula: see text] mutation from natural products, which were consistent with reported laboratory studies. Afterward, we further investigated the interpretability of the graph-based “black box” model and highlighted the active structures that contributed the most. DoubleSG-DTA thus provides a powerful and interpretable framework that extrapolates for potential chemicals to modulate the systemic response to disease. |
---|