Cargando…
DoubleSG-DTA: Deep Learning for Drug Discovery: Case Study on the Non-Small Cell Lung Cancer with EGFR(T790M) Mutation
Drug–targeted therapies are promising approaches to treating tumors, and research on receptor–ligand interactions for discovering high-affinity targeted drugs has been accelerating drug development. This study presents a mechanism-driven deep learning-based computational model to learn double drug s...
Autores principales: | Qian, Yongtao, Ni, Wanxing, Xianyu, Xingxing, Tao, Liang, Wang, Qin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965659/ https://www.ncbi.nlm.nih.gov/pubmed/36839996 http://dx.doi.org/10.3390/pharmaceutics15020675 |
Ejemplares similares
-
Comparative analysis of QS3D versus droplet digital PCR for quantitative measures of EGFR T790M mutation from identical plasma
por: Guo, Qiaomei, et al.
Publicado: (2022) -
DeepDTA: deep drug–target binding affinity prediction
por: Öztürk, Hakime, et al.
Publicado: (2018) -
EGFR T790M Mutation as a Possible Target for Immunotherapy; Identification of HLA-A*0201-Restricted T Cell Epitopes Derived from the EGFR T790M Mutation
por: Yamada, Teppei, et al.
Publicado: (2013) -
Structural signature of the G719S-T790M double mutation in the EGFR kinase domain and its response to inhibitors
por: C., George Priya Doss, et al.
Publicado: (2014) -
In silico insight into EGFR treatment in patients with lung carcinoma and T790M mutations
por: Zang, Shu-Zhi, et al.
Publicado: (2017)