Cargando…

Pre-Diabetes-Linked miRNA miR-193b-3p Targets PPARGC1A, Disrupts Metabolic Gene Expression Profile and Increases Lipid Accumulation in Hepatocytes: Relevance for MAFLD

Distinct plasma microRNA profiles associate with different disease features and could be used to personalize diagnostics. Elevated plasma microRNA hsa-miR-193b-3p has been reported in patients with pre-diabetes where early asymptomatic liver dysmetabolism plays a crucial role. In this study, we prop...

Descripción completa

Detalles Bibliográficos
Autores principales: Mollet, Inês Guerra, Macedo, Maria Paula
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965679/
https://www.ncbi.nlm.nih.gov/pubmed/36835287
http://dx.doi.org/10.3390/ijms24043875
_version_ 1784896825161940992
author Mollet, Inês Guerra
Macedo, Maria Paula
author_facet Mollet, Inês Guerra
Macedo, Maria Paula
author_sort Mollet, Inês Guerra
collection PubMed
description Distinct plasma microRNA profiles associate with different disease features and could be used to personalize diagnostics. Elevated plasma microRNA hsa-miR-193b-3p has been reported in patients with pre-diabetes where early asymptomatic liver dysmetabolism plays a crucial role. In this study, we propose the hypothesis that elevated plasma hsa-miR-193b-3p conditions hepatocyte metabolic functions contributing to fatty liver disease. We show that hsa-miR-193b-3p specifically targets the mRNA of its predicted target PPARGC1A/PGC1α and consistently reduces its expression in both normal and hyperglycemic conditions. PPARGC1A/PGC1α is a central co-activator of transcriptional cascades that regulate several interconnected pathways, including mitochondrial function together with glucose and lipid metabolism. Profiling gene expression of a metabolic panel in response to overexpression of microRNA hsa-miR-193b-3p revealed significant changes in the cellular metabolic gene expression profile, including lower expression of MTTP, MLXIPL/ChREBP, CD36, YWHAZ and GPT, and higher expression of LDLR, ACOX1, TRIB1 and PC. Overexpression of hsa-miR-193b-3p under hyperglycemia also resulted in excess accumulation of intracellular lipid droplets in HepG2 cells. This study supports further research into potential use of microRNA hsa-miR-193b-3p as a possible clinically relevant plasma biomarker for metabolic-associated fatty liver disease (MAFLD) in dysglycemic context.
format Online
Article
Text
id pubmed-9965679
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99656792023-02-26 Pre-Diabetes-Linked miRNA miR-193b-3p Targets PPARGC1A, Disrupts Metabolic Gene Expression Profile and Increases Lipid Accumulation in Hepatocytes: Relevance for MAFLD Mollet, Inês Guerra Macedo, Maria Paula Int J Mol Sci Article Distinct plasma microRNA profiles associate with different disease features and could be used to personalize diagnostics. Elevated plasma microRNA hsa-miR-193b-3p has been reported in patients with pre-diabetes where early asymptomatic liver dysmetabolism plays a crucial role. In this study, we propose the hypothesis that elevated plasma hsa-miR-193b-3p conditions hepatocyte metabolic functions contributing to fatty liver disease. We show that hsa-miR-193b-3p specifically targets the mRNA of its predicted target PPARGC1A/PGC1α and consistently reduces its expression in both normal and hyperglycemic conditions. PPARGC1A/PGC1α is a central co-activator of transcriptional cascades that regulate several interconnected pathways, including mitochondrial function together with glucose and lipid metabolism. Profiling gene expression of a metabolic panel in response to overexpression of microRNA hsa-miR-193b-3p revealed significant changes in the cellular metabolic gene expression profile, including lower expression of MTTP, MLXIPL/ChREBP, CD36, YWHAZ and GPT, and higher expression of LDLR, ACOX1, TRIB1 and PC. Overexpression of hsa-miR-193b-3p under hyperglycemia also resulted in excess accumulation of intracellular lipid droplets in HepG2 cells. This study supports further research into potential use of microRNA hsa-miR-193b-3p as a possible clinically relevant plasma biomarker for metabolic-associated fatty liver disease (MAFLD) in dysglycemic context. MDPI 2023-02-15 /pmc/articles/PMC9965679/ /pubmed/36835287 http://dx.doi.org/10.3390/ijms24043875 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Mollet, Inês Guerra
Macedo, Maria Paula
Pre-Diabetes-Linked miRNA miR-193b-3p Targets PPARGC1A, Disrupts Metabolic Gene Expression Profile and Increases Lipid Accumulation in Hepatocytes: Relevance for MAFLD
title Pre-Diabetes-Linked miRNA miR-193b-3p Targets PPARGC1A, Disrupts Metabolic Gene Expression Profile and Increases Lipid Accumulation in Hepatocytes: Relevance for MAFLD
title_full Pre-Diabetes-Linked miRNA miR-193b-3p Targets PPARGC1A, Disrupts Metabolic Gene Expression Profile and Increases Lipid Accumulation in Hepatocytes: Relevance for MAFLD
title_fullStr Pre-Diabetes-Linked miRNA miR-193b-3p Targets PPARGC1A, Disrupts Metabolic Gene Expression Profile and Increases Lipid Accumulation in Hepatocytes: Relevance for MAFLD
title_full_unstemmed Pre-Diabetes-Linked miRNA miR-193b-3p Targets PPARGC1A, Disrupts Metabolic Gene Expression Profile and Increases Lipid Accumulation in Hepatocytes: Relevance for MAFLD
title_short Pre-Diabetes-Linked miRNA miR-193b-3p Targets PPARGC1A, Disrupts Metabolic Gene Expression Profile and Increases Lipid Accumulation in Hepatocytes: Relevance for MAFLD
title_sort pre-diabetes-linked mirna mir-193b-3p targets ppargc1a, disrupts metabolic gene expression profile and increases lipid accumulation in hepatocytes: relevance for mafld
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965679/
https://www.ncbi.nlm.nih.gov/pubmed/36835287
http://dx.doi.org/10.3390/ijms24043875
work_keys_str_mv AT molletinesguerra prediabeteslinkedmirnamir193b3ptargetsppargc1adisruptsmetabolicgeneexpressionprofileandincreaseslipidaccumulationinhepatocytesrelevanceformafld
AT macedomariapaula prediabeteslinkedmirnamir193b3ptargetsppargc1adisruptsmetabolicgeneexpressionprofileandincreaseslipidaccumulationinhepatocytesrelevanceformafld