Cargando…

INAM-Based Image-Adaptive 3D LUTs for Underwater Image Enhancement

To the best of our knowledge, applying adaptive three-dimensional lookup tables (3D LUTs) to underwater image enhancement is an unprecedented attempt. It can achieve excellent enhancement results compared to some other methods. However, in the image weight prediction process, the model uses the norm...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiao, Xiao, Gao, Xingzhi, Hui, Yilong, Jin, Zhiling, Zhao, Hongyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965914/
https://www.ncbi.nlm.nih.gov/pubmed/36850767
http://dx.doi.org/10.3390/s23042169
Descripción
Sumario:To the best of our knowledge, applying adaptive three-dimensional lookup tables (3D LUTs) to underwater image enhancement is an unprecedented attempt. It can achieve excellent enhancement results compared to some other methods. However, in the image weight prediction process, the model uses the normalization method of Instance Normalization, which will significantly reduce the standard deviation of the features, thus degrading the performance of the network. To address this issue, we propose an Instance Normalization Adaptive Modulator (INAM) that amplifies the pixel bias by adaptively predicting modulation factors and introduce the INAM into the learning image-adaptive 3D LUTs for underwater image enhancement. The bias amplification strategy in INAM makes the edge information in the features more distinguishable. Therefore, the adaptive 3D LUTs with INAM can substantially improve the performance on underwater image enhancement. Extensive experiments are undertaken to demonstrate the effectiveness of the proposed method.