Cargando…
Automated Battery Making Fault Classification Using Over-Sampled Image Data CNN Features
Due to the tremendous expectations placed on batteries to produce a reliable and secure product, fault detection has become a critical part of the manufacturing process. Manually, it takes much labor and effort to test each battery individually for manufacturing faults including burning, welding tha...
Autores principales: | Din, Nasir Ud, Zhang, Li, Yang, Yatao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965985/ https://www.ncbi.nlm.nih.gov/pubmed/36850526 http://dx.doi.org/10.3390/s23041927 |
Ejemplares similares
-
Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN
por: Liu, Chang, et al.
Publicado: (2018) -
Evaluation of Different Bearing Fault Classifiers in Utilizing CNN Feature Extraction Ability
por: Xie, Wenlang, et al.
Publicado: (2022) -
Combined CNN and Pixel Feature Image for Fatty Liver Ultrasound Image Classification
por: Zhu, Haijiang, et al.
Publicado: (2022) -
Automated Freshwater Fish Species Classification using Deep CNN
por: Deka, Jayashree, et al.
Publicado: (2023) -
An information-rich sampling technique over spatio-temporal CNN for classification of human actions in videos
por: Basha, S. H. Shabbeer, et al.
Publicado: (2022)