Cargando…

Global Responses of Autopolyploid Sugarcane Badila (Saccharum officinarum L.) to Drought Stress Based on Comparative Transcriptome and Metabolome Profiling

Sugarcane (Saccharum spp. hybrid) is frequently affected by seasonal drought, which causes substantial declines in quality and yield. To understand the drought resistance mechanisms of S. officinarum, the main species of modern sugarcane, at a molecular level, we carried out a comparative analysis o...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Shan, Chu, Na, Feng, Naijie, Zhou, Bolin, Zhou, Hongkai, Deng, Zuhu, Shen, Xuefeng, Zheng, Dianfeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9966050/
https://www.ncbi.nlm.nih.gov/pubmed/36835268
http://dx.doi.org/10.3390/ijms24043856
_version_ 1784896919606132736
author Yang, Shan
Chu, Na
Feng, Naijie
Zhou, Bolin
Zhou, Hongkai
Deng, Zuhu
Shen, Xuefeng
Zheng, Dianfeng
author_facet Yang, Shan
Chu, Na
Feng, Naijie
Zhou, Bolin
Zhou, Hongkai
Deng, Zuhu
Shen, Xuefeng
Zheng, Dianfeng
author_sort Yang, Shan
collection PubMed
description Sugarcane (Saccharum spp. hybrid) is frequently affected by seasonal drought, which causes substantial declines in quality and yield. To understand the drought resistance mechanisms of S. officinarum, the main species of modern sugarcane, at a molecular level, we carried out a comparative analysis of transcriptome and metabolome profiling of the sugarcane variety Badila under drought stress (DS). Compared with control group (CG) plants, plants exposed to DS had 13,744 (6663 up-regulated and 7081 down-regulated) differentially expressed genes (DEGs). GO and KEGG analysis showed that the DEGs were enriched in photosynthesis-related pathways and most DEGs had down-regulated expression. Moreover, the chlorophyll content, photosynthesis (Photo), stomatal conductance (Cond), intercellular carbon dioxide concentration (Ci) and transpiration rate (Trmmol) were sharply decreased under DS. These results indicate that DS has a significant negative influence on photosynthesis in sugarcane. Metabolome analysis identified 166 (37 down-regulated and 129 up-regulated) significantly regulated metabolites (SRMs). Over 50% of SRMs were alkaloids, amino acids and their derivatives, and lipids. The five most significantly enriched KEGG pathways among SRMs were Aminoacyl-tRNA biosynthesis, 2-Oxocarboxylic acid metabolism, Biosynthesis of amino acids, Phenylalanine metabolism, and Arginine and proline metabolism (p < 0.05). Comparing CG with DS for transcriptome and metabolome profiling (T_CG/DS and M_CG/DS, respectively), we found three of the same KEGG-enriched pathways, namely Biosynthesis of amino acids, Phenylalanine metabolism and Arginine and proline metabolism. The potential importance of Phenylalanine metabolism and Arginine and proline metabolism was further analyzed for response to DS in sugarcane. Seven SRMs (five up-regulated and two down-regulated) and 60 DEGs (17 up-regulated and 43 down-regulated) were enriched in Phenylalanine metabolism under DS, of which novel.31261, Sspon.04G0008060-1A, Sspon.04G0008060-2B and Sspon.04G0008060-3C were significantly correlated with 7 SRMs. In Arginine and proline metabolism, eight SRMs (seven up-regulated and one down-regulated) and 63 DEGs (32 up-regulated and 31 down-regulated) were enriched, of which Sspon.01G0026110-1A (OAT) and Sspon.03G0002750-3D (P5CS) were strongly associated with proline (r > 0.99). These findings present the dynamic changes and possible molecular mechanisms of Phenylalanine metabolism as well as Arginine and proline metabolism under DS and provide a foundation for future research and sugarcane improvement.
format Online
Article
Text
id pubmed-9966050
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99660502023-02-26 Global Responses of Autopolyploid Sugarcane Badila (Saccharum officinarum L.) to Drought Stress Based on Comparative Transcriptome and Metabolome Profiling Yang, Shan Chu, Na Feng, Naijie Zhou, Bolin Zhou, Hongkai Deng, Zuhu Shen, Xuefeng Zheng, Dianfeng Int J Mol Sci Article Sugarcane (Saccharum spp. hybrid) is frequently affected by seasonal drought, which causes substantial declines in quality and yield. To understand the drought resistance mechanisms of S. officinarum, the main species of modern sugarcane, at a molecular level, we carried out a comparative analysis of transcriptome and metabolome profiling of the sugarcane variety Badila under drought stress (DS). Compared with control group (CG) plants, plants exposed to DS had 13,744 (6663 up-regulated and 7081 down-regulated) differentially expressed genes (DEGs). GO and KEGG analysis showed that the DEGs were enriched in photosynthesis-related pathways and most DEGs had down-regulated expression. Moreover, the chlorophyll content, photosynthesis (Photo), stomatal conductance (Cond), intercellular carbon dioxide concentration (Ci) and transpiration rate (Trmmol) were sharply decreased under DS. These results indicate that DS has a significant negative influence on photosynthesis in sugarcane. Metabolome analysis identified 166 (37 down-regulated and 129 up-regulated) significantly regulated metabolites (SRMs). Over 50% of SRMs were alkaloids, amino acids and their derivatives, and lipids. The five most significantly enriched KEGG pathways among SRMs were Aminoacyl-tRNA biosynthesis, 2-Oxocarboxylic acid metabolism, Biosynthesis of amino acids, Phenylalanine metabolism, and Arginine and proline metabolism (p < 0.05). Comparing CG with DS for transcriptome and metabolome profiling (T_CG/DS and M_CG/DS, respectively), we found three of the same KEGG-enriched pathways, namely Biosynthesis of amino acids, Phenylalanine metabolism and Arginine and proline metabolism. The potential importance of Phenylalanine metabolism and Arginine and proline metabolism was further analyzed for response to DS in sugarcane. Seven SRMs (five up-regulated and two down-regulated) and 60 DEGs (17 up-regulated and 43 down-regulated) were enriched in Phenylalanine metabolism under DS, of which novel.31261, Sspon.04G0008060-1A, Sspon.04G0008060-2B and Sspon.04G0008060-3C were significantly correlated with 7 SRMs. In Arginine and proline metabolism, eight SRMs (seven up-regulated and one down-regulated) and 63 DEGs (32 up-regulated and 31 down-regulated) were enriched, of which Sspon.01G0026110-1A (OAT) and Sspon.03G0002750-3D (P5CS) were strongly associated with proline (r > 0.99). These findings present the dynamic changes and possible molecular mechanisms of Phenylalanine metabolism as well as Arginine and proline metabolism under DS and provide a foundation for future research and sugarcane improvement. MDPI 2023-02-14 /pmc/articles/PMC9966050/ /pubmed/36835268 http://dx.doi.org/10.3390/ijms24043856 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Yang, Shan
Chu, Na
Feng, Naijie
Zhou, Bolin
Zhou, Hongkai
Deng, Zuhu
Shen, Xuefeng
Zheng, Dianfeng
Global Responses of Autopolyploid Sugarcane Badila (Saccharum officinarum L.) to Drought Stress Based on Comparative Transcriptome and Metabolome Profiling
title Global Responses of Autopolyploid Sugarcane Badila (Saccharum officinarum L.) to Drought Stress Based on Comparative Transcriptome and Metabolome Profiling
title_full Global Responses of Autopolyploid Sugarcane Badila (Saccharum officinarum L.) to Drought Stress Based on Comparative Transcriptome and Metabolome Profiling
title_fullStr Global Responses of Autopolyploid Sugarcane Badila (Saccharum officinarum L.) to Drought Stress Based on Comparative Transcriptome and Metabolome Profiling
title_full_unstemmed Global Responses of Autopolyploid Sugarcane Badila (Saccharum officinarum L.) to Drought Stress Based on Comparative Transcriptome and Metabolome Profiling
title_short Global Responses of Autopolyploid Sugarcane Badila (Saccharum officinarum L.) to Drought Stress Based on Comparative Transcriptome and Metabolome Profiling
title_sort global responses of autopolyploid sugarcane badila (saccharum officinarum l.) to drought stress based on comparative transcriptome and metabolome profiling
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9966050/
https://www.ncbi.nlm.nih.gov/pubmed/36835268
http://dx.doi.org/10.3390/ijms24043856
work_keys_str_mv AT yangshan globalresponsesofautopolyploidsugarcanebadilasaccharumofficinarumltodroughtstressbasedoncomparativetranscriptomeandmetabolomeprofiling
AT chuna globalresponsesofautopolyploidsugarcanebadilasaccharumofficinarumltodroughtstressbasedoncomparativetranscriptomeandmetabolomeprofiling
AT fengnaijie globalresponsesofautopolyploidsugarcanebadilasaccharumofficinarumltodroughtstressbasedoncomparativetranscriptomeandmetabolomeprofiling
AT zhoubolin globalresponsesofautopolyploidsugarcanebadilasaccharumofficinarumltodroughtstressbasedoncomparativetranscriptomeandmetabolomeprofiling
AT zhouhongkai globalresponsesofautopolyploidsugarcanebadilasaccharumofficinarumltodroughtstressbasedoncomparativetranscriptomeandmetabolomeprofiling
AT dengzuhu globalresponsesofautopolyploidsugarcanebadilasaccharumofficinarumltodroughtstressbasedoncomparativetranscriptomeandmetabolomeprofiling
AT shenxuefeng globalresponsesofautopolyploidsugarcanebadilasaccharumofficinarumltodroughtstressbasedoncomparativetranscriptomeandmetabolomeprofiling
AT zhengdianfeng globalresponsesofautopolyploidsugarcanebadilasaccharumofficinarumltodroughtstressbasedoncomparativetranscriptomeandmetabolomeprofiling