Cargando…

Current Status of Polysaccharides-Based Drug Delivery Systems for Nervous Tissue Injuries Repair

Neurological disorders affecting both CNS and PNS still represent one of the most critical and challenging pathologies, therefore many researchers have been focusing on this field in recent decades. Spinal cord injury (SCI) and peripheral nerve injury (PNI) are severely disabling diseases leading to...

Descripción completa

Detalles Bibliográficos
Autores principales: Valentino, Caterina, Vigani, Barbara, Sandri, Giuseppina, Ferrari, Franca, Rossi, Silvia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9966335/
https://www.ncbi.nlm.nih.gov/pubmed/36839722
http://dx.doi.org/10.3390/pharmaceutics15020400
Descripción
Sumario:Neurological disorders affecting both CNS and PNS still represent one of the most critical and challenging pathologies, therefore many researchers have been focusing on this field in recent decades. Spinal cord injury (SCI) and peripheral nerve injury (PNI) are severely disabling diseases leading to dramatic and, in most cases, irreversible sensory, motor, and autonomic impairments. The challenging pathophysiologic consequences involved in SCI and PNI are demanding the development of more effective therapeutic strategies since, as yet, a therapeutic strategy that can effectively lead to a complete recovery from such pathologies is not available. Drug delivery systems (DDSs) based on polysaccharides have been receiving more and more attention for a wide range of applications, due to their outstanding physical-chemical properties. This review aims at providing an overview of the most studied polysaccharides used for the development of DDSs intended for the repair and regeneration of a damaged nervous system, with particular attention to spinal cord and peripheral nerve injury treatments. In particular, DDSs based on chitosan and their association with alginate, dextran, agarose, cellulose, and gellan were thoroughly revised.