Cargando…

Design and Development of Tantalum and Strontium Ion Doped Hydroxyapatite Composite Coating on Titanium Substrate: Structural and Human Osteoblast-like Cell Viability Studies

In order to reduce the loosening of dental implants, surface modification with hydroxyapatite (HA) coating has shown promising results. Therefore, in this present study, the sol-gel technique has been employed to form a tantalum and strontium ion-doped hybrid HA layer coating onto the titanium (Ti)-...

Descripción completa

Detalles Bibliográficos
Autores principales: Dommeti, Vamsi Krishna, Roy, Sandipan, Pramanik, Sumit, Merdji, Ali, Ouldyerou, Abdelhak, Özcan, Mutlu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9966348/
https://www.ncbi.nlm.nih.gov/pubmed/36837128
http://dx.doi.org/10.3390/ma16041499
Descripción
Sumario:In order to reduce the loosening of dental implants, surface modification with hydroxyapatite (HA) coating has shown promising results. Therefore, in this present study, the sol-gel technique has been employed to form a tantalum and strontium ion-doped hybrid HA layer coating onto the titanium (Ti)-alloy substrate. In this study, the surface modification was completed by using 3% tantalum pent oxide (Ta(2)O(5)), 3% strontium (Sr), and a combination of 1.5% Ta(2)O(5) and 1.5% Sr as additives, along with HA gel by spin coating technique. These additives played a prominent role in producing a porous structure layer coating and further cell growth. The MG63 cell culture assay results indicated that due to the incorporation of strontium ions along with tantalum embedded in HA, cell proliferation increased significantly after a 48 h study. Therefore, the present results, including microstructure, crystal structure, binding energy, and cell proliferation, showed that the additives 1.5% Ta(2)O(5) and 1.5% Sr embedded in HA on the Ti–substrate had an optimized porous coating structure, which will enhance bone in-growth in surface-modified Ti-implants. This material had a proper porous morphology with a roughness profile, which may be suitable for tissue in-growth between a surface-modified textured implant and bone interface and could be applicable for dental implants.