Cargando…
Zero-Shot Image Classification Method Based on Attention Mechanism and Semantic Information Fusion
The zero-shot image classification (ZSIC) is designed to solve the classification problem when the sample is very small, or the category is missing. A common method is to use attribute or word vectors as a priori category features (auxiliary information) and complete the domain transfer from trainin...
Autores principales: | Wang, Yaru, Feng, Lilong, Song, Xiaoke, Xu, Dawei, Zhai, Yongjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9966441/ https://www.ncbi.nlm.nih.gov/pubmed/36850908 http://dx.doi.org/10.3390/s23042311 |
Ejemplares similares
-
Few-shot image classification algorithm based on attention mechanism and weight fusion
por: Meng, Xiaoxia, et al.
Publicado: (2023) -
Semantic-visual shared knowledge graph for zero-shot learning
por: Yu, Beibei, et al.
Publicado: (2023) -
Zero-Shot Image Classification Based on a Learnable Deep Metric
por: Liu, Jingyi, et al.
Publicado: (2021) -
Feature augmentation based on information fusion rectification for few-shot image classification
por: Wang, Hang, et al.
Publicado: (2023) -
CREaTor: zero-shot cis-regulatory pattern modeling with attention mechanisms
por: Li, Yongge, et al.
Publicado: (2023)