Cargando…

Microstructure and Cavitation Damage Characteristics of GX40CrNiSi25-20 Cast Stainless Steel by TIG Surface Remelting

Cavitation erosion degrades the surface of engineering components when the material is exposed to turbulent fluid flows. Under conditions of local pressure fluctuations, a nucleation of gas or vapor bubbles occurs. If the pressure suddenly drops below the vapor pressure, these bubbles collapse viole...

Descripción completa

Detalles Bibliográficos
Autores principales: Mitelea, Ion, Bordeaşu, Ilare, Cosma (Alexa), Daniela, Uțu, Ion-Dragoș, Crăciunescu, Corneliu Marius
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9966455/
https://www.ncbi.nlm.nih.gov/pubmed/36837054
http://dx.doi.org/10.3390/ma16041423
Descripción
Sumario:Cavitation erosion degrades the surface of engineering components when the material is exposed to turbulent fluid flows. Under conditions of local pressure fluctuations, a nucleation of gas or vapor bubbles occurs. If the pressure suddenly drops below the vapor pressure, these bubbles collapse violently when subjected to higher pressure. This collapse is accompanied by the sudden flow of the liquid, which is manifested by stress pulses capable of causing plastic deformations on solid surfaces. Repeating these stress conditions can cause material removal and ultimately failure of the component itself. The present study aims to reduce the negative impact of this phenomenon on the mechanical systems components, using the TIG local surface remelting technique. Cavitation erosion tests were performed in accordance with the ASTM G32-2016 standard on samples taken from a cast high-alloy stainless steel. The alloy response for each melting current value was investigated by measuring mass loss as a function of cavitation attack time and by analyzing the damaged surfaces using optical and scanning electron microscopes. It was highlighted that the TIG remelted layers provide an increase in cavitation erosion resistance of 5–6 times as a consequence of the fine graining and microstructure induced by the technique applied.