Cargando…

Rheological Properties of Non-Adhesive Embolizing Compounds—The Key to Fine-Tuning Embolization Process-Modeling in Endovascular Surgery

The study of polymers’ rheological properties is of paramount importance both for the problems of their industrial production as well as for their practical application. Two polymers used for embolization of arteriovenous malformations (AVMs) are studied in this work: Onyx-18(®) and Squid-12(®). Vis...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuianova, Iuliia, Chupakhin, Alexander, Besov, Alexey, Gorbatykh, Anton, Kislitsin, Dmitry, Orlov, Kirill, Parshin, Daniil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9966492/
https://www.ncbi.nlm.nih.gov/pubmed/36850343
http://dx.doi.org/10.3390/polym15041060
Descripción
Sumario:The study of polymers’ rheological properties is of paramount importance both for the problems of their industrial production as well as for their practical application. Two polymers used for embolization of arteriovenous malformations (AVMs) are studied in this work: Onyx-18(®) and Squid-12(®). Viscosity curve tests and computational fluid dynamics (CFD) were used to uncover viscosity law as a function of shear rate as well as behavior of the polymers in catheter or pathological tissue models. The property of thermal activation of viscosity was demonstrated, namely, the law of dependence of viscosity on temperature in the range from 20 [Formula: see text] C to 37 [Formula: see text] C was established. A zone of viscosity nonmonotonicity was identified, and a physical interpretation of the dependence of the embolic polymers’ viscosity on the shear rate was given on the basis of Cisco’s model. The obtained empirical constants will be useful for researchers based on the CFD of AVMs. A description of the process of temperature activation of the embolic polymers’ viscosity is important for understanding the mechanics of the embolization process by practicing surgeons as well as for producing new prospective embolic agents.