Cargando…
A Soft Label Method for Medical Image Segmentation with Multirater Annotations
In medical image analysis, collecting multiple annotations from different clinical raters is a typical practice to mitigate possible diagnostic errors. For such multirater labels' learning problems, in addition to majority voting, it is a common practice to use soft labels in the form of full-p...
Autores principales: | Zhang, Jichang, Zheng, Yuanjie, Shi, Yunfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9966563/ https://www.ncbi.nlm.nih.gov/pubmed/36851939 http://dx.doi.org/10.1155/2023/1883597 |
Ejemplares similares
-
Asymptotic variability of (multilevel) multirater kappa
coefficients
por: Vanbelle, Sophie
Publicado: (2018) -
Efficient Noninvasive FHB Estimation using RGB Images from a Novel Multiyear, Multirater Dataset
por: Rößle, Dominik, et al.
Publicado: (2023) -
Feedback to Managers: A Guide to Reviewing and Selecting Multirater Instruments for Leadership Development
por: Leslie, Jean
Publicado: (2013) -
Learning from multiple annotators for medical image segmentation
por: Zhang, Le, et al.
Publicado: (2023) -
Annotation-efficient deep learning for automatic medical image segmentation
por: Wang, Shanshan, et al.
Publicado: (2021)