Cargando…
Development and Validation of Deep Learning Models for the Multiclassification of Reflux Esophagitis Based on the Los Angeles Classification
This study is to evaluate the feasibility of deep learning (DL) models in the multiclassification of reflux esophagitis (RE) endoscopic images, according to the Los Angeles (LA) classification for the first time. The images were divided into three groups, namely, normal, LA classification A + B, and...
Autores principales: | Ge, Hailong, Zhou, Xin, Wang, Yu, Xu, Jian, Mo, Feng, Chao, Chen, Zhu, Jinzhou, Yu, Weixin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9966565/ https://www.ncbi.nlm.nih.gov/pubmed/36852218 http://dx.doi.org/10.1155/2023/7023731 |
Ejemplares similares
-
Relationship between esophageal motility and severity of gastroesophageal reflux disease according to the Los Angeles classification
por: Liu, Lan, et al.
Publicado: (2019) -
Multiclassification of Endoscopic Colonoscopy Images Based on Deep Transfer Learning
por: Wang, Yan, et al.
Publicado: (2021) -
Clinical features of acute esophageal mucosal lesions and reflux esophagitis Los Angeles classification grade D: A retrospective study
por: Ichita, Chikamasa, et al.
Publicado: (2023) -
SCDNet: A Deep Learning-Based Framework for the Multiclassification of Skin Cancer Using Dermoscopy Images
por: Naeem, Ahmad, et al.
Publicado: (2022) -
Multiclassification of different Higgs Boson production mechanism susing Machine Learning
por: Rho, Nao
Publicado: (2017)