Cargando…
Machine Learning-Based Multiomics Prediction Model for Radiation Pneumonitis
OBJECTIVE: The study aims to establish and validate an effective CT-based radiation pneumonitis (RP) prediction model using the multiomics method of radiomics and EQD2-based dosiomics. MATERIALS AND METHODS: The study performed a retrospective analysis on 91 nonsmall cell lung cancer patients who re...
Autores principales: | Zhou, Lu, Wen, Yuefeng, Zhang, Guoqian, Wang, Linjing, Wu, Shuyu, Zhang, Shuxu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9966572/ https://www.ncbi.nlm.nih.gov/pubmed/36852328 http://dx.doi.org/10.1155/2023/5328927 |
Ejemplares similares
-
Multiomics and machine learning in lung cancer prognosis
por: Gao, Yanan, et al.
Publicado: (2020) -
Prediction of radiation pneumonitis with machine learning using 4D-CT based dose-function features
por: Katsuta, Yoshiyuki, et al.
Publicado: (2021) -
Prediction of Radiation Pneumonitis With Machine Learning in Stage III Lung Cancer: A Pilot Study
por: Yakar, Melek, et al.
Publicado: (2021) -
Reduction in stray radiation dose using a body‐shielding device during external radiation therapy
por: Zhang, Shuxu, et al.
Publicado: (2017) -
Identification and prediction of immune checkpoint inhibitors-related pneumonitis by machine learning
por: Gong, Li, et al.
Publicado: (2023)