Cargando…
Distributed Detection of Malicious Android Apps While Preserving Privacy Using Federated Learning
Recently, deep learning has been widely used to solve existing computing problems through large-scale data mining. Conventional training of the deep learning model is performed on a central (cloud) server that is equipped with high computing power, by integrating data via high computational intensit...
Autor principal: | Lee, Suchul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9966842/ https://www.ncbi.nlm.nih.gov/pubmed/36850794 http://dx.doi.org/10.3390/s23042198 |
Ejemplares similares
-
FedHGCDroid: An Adaptive Multi-Dimensional Federated Learning for Privacy-Preserving Android Malware Classification
por: Jiang, Changnan, et al.
Publicado: (2022) -
AndroAnalyzer: android malicious software detection based on deep learning
por: Arslan, Recep Sinan
Publicado: (2021) -
MVDroid: an android malicious VPN detector using neural networks
por: Seraj, Saeed, et al.
Publicado: (2023) -
Federated Learning-Based Insulator Fault Detection for Data Privacy Preserving
por: Luan, Zhirong, et al.
Publicado: (2023) -
Communication-Efficient and Privacy-Preserving Verifiable Aggregation for Federated Learning
por: Peng, Kaixin, et al.
Publicado: (2023)