Cargando…
Development of Deep Belief Network for Tool Faults Recognition
The controlled interaction of work material and cutting tool is responsible for the precise outcome of machining activity. Any deviation in cutting parameters such as speed, feed, and depth of cut causes a disturbance to the machining. This leads to the deterioration of a cutting edge and unfinished...
Autores principales: | Kale, Archana P., Wahul, Revati M., Patange, Abhishek D., Soman, Rohan, Ostachowicz, Wieslaw |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9966852/ https://www.ncbi.nlm.nih.gov/pubmed/36850477 http://dx.doi.org/10.3390/s23041872 |
Ejemplares similares
-
Kalman Filter Based Load Monitoring in Beam Like Structures Using Fibre-Optic Strain Sensors
por: Soman, Rohan, et al.
Publicado: (2018) -
Unsupervised Fault Diagnosis of a Gear Transmission Chain Using a Deep Belief Network
por: He, Jun, et al.
Publicado: (2017) -
Competitive Deep-Belief Networks for Underwater Acoustic Target Recognition
por: Yang, Honghui, et al.
Publicado: (2018) -
Analysis of Weak Fault in Hydraulic System Based on Multi-scale Permutation Entropy of Fault-Sensitive Intrinsic Mode Function and Deep Belief Network
por: Huang, Jie, et al.
Publicado: (2019) -
A Belief Network Reasoning Framework for Fault Localization in Communication Networks
por: Liang, Rongyu, et al.
Publicado: (2020)