Cargando…

A Dual-Axis Rotation Scheme for Redundant Rotational Inertial Navigation System

A redundant rotational inertial navigation system (RRINS) comprises a redundant inertial measurement unit (RIMU) and a turntable for improving reliability and navigation accuracy. Because of the multi-sensor configuration, the RIMU has a more complex error model compared with the traditional orthogo...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Ting, Wang, Lifen, Zou, Tao, Peng, Gao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9966896/
https://www.ncbi.nlm.nih.gov/pubmed/36838051
http://dx.doi.org/10.3390/mi14020351
Descripción
Sumario:A redundant rotational inertial navigation system (RRINS) comprises a redundant inertial measurement unit (RIMU) and a turntable for improving reliability and navigation accuracy. Because of the multi-sensor configuration, the RIMU has a more complex error model compared with the traditional orthogonal inertial measurement unit (IMU). Therefore, the RIMU-based rotation scheme cannot simply replicate the traditional IMU-based rotation scheme. In this study, a dual-axis rotation scheme for RIMU characteristics is proposed. First, the error model of the RIMU was established, and the error compensation of RIMU caused by rotation was analyzed. Second, the principles of rotation axis switching and reciprocating rotation were summarized, and a dual-axis rotation scheme was designed by these principles. Finally, the rotation scheme was applied to an RRINS prototype consisting of RIMU (four fiber optic gyroscopes + four quartz accelerometers) and a dual-axis turntable, and then simulations and experiments were performed. The results of the simulations and experiments show that the positioning accuracy of RRINS can be obviously improved by using the proposed rotation scheme.