Cargando…

Potential Application of the WST-8-mPMS Assay for Rapid Viable Microorganism Detection

To ensure clean drinking water, viable pathogens in water must be rapidly and efficiently screened. The traditional culture or spread-plate process—the conventional standard for bacterial detection—is laborious, time-consuming, and unsuitable for rapid detection. Therefore, we developed a colorimetr...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Cheng-Han, Liao, Yu-Hsiang, Muljadi, Michael, Lu, Tsai-Te, Cheng, Chao-Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9966898/
https://www.ncbi.nlm.nih.gov/pubmed/36839615
http://dx.doi.org/10.3390/pathogens12020343
Descripción
Sumario:To ensure clean drinking water, viable pathogens in water must be rapidly and efficiently screened. The traditional culture or spread-plate process—the conventional standard for bacterial detection—is laborious, time-consuming, and unsuitable for rapid detection. Therefore, we developed a colorimetric assay for rapid microorganism detection using a metabolism-based approach. The reaction between a viable microorganism and the combination of 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium sodium salt (WST-8) and 1-methoxy-5-methylphenazinium methyl sulfate (mPMS) results in a color change. In combination with a microplate reader, WST-8-mPMS reactivity was leveraged to develop a colorimetric assay for the rapid detection of various bacteria. The detection limit of the WST-8-mPMS assay for both gram-negative and gram-positive bacteria was evaluated. This WST-8-mPMS assay can be used to perform colorimetrical semi-quantitative detection of various bacterial strains in buffers or culture media within 1 h without incubation before the reaction. The easy-to-use, robust, rapid, and sensitive nature of this novel assay demonstrates its potential for practical and medical use for microorganism detection.