Cargando…
Early Identification of Crop Type for Smallholder Farming Systems Using Deep Learning on Time-Series Sentinel-2 Imagery
Climate change and the COVID-19 pandemic have disrupted the food supply chain across the globe and adversely affected food security. Early estimation of staple crops can assist relevant government agencies to take timely actions for ensuring food security. Reliable crop type maps can play an essenti...
Autores principales: | Khan, Haseeb Rehman, Gillani, Zeeshan, Jamal, Muhammad Hasan, Athar, Atifa, Chaudhry, Muhammad Tayyab, Chao, Haoyu, He, Yong, Chen, Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967001/ https://www.ncbi.nlm.nih.gov/pubmed/36850377 http://dx.doi.org/10.3390/s23041779 |
Ejemplares similares
-
Long short term memory deep net performance on fused Planet-Scope and Sentinel-2 imagery for detection of agricultural crop
por: Rehman, Touseef Ur, et al.
Publicado: (2023) -
Crop Water Content of Winter Wheat Revealed with Sentinel-1 and Sentinel-2 Imagery
por: Han, Dong, et al.
Publicado: (2019) -
Coupling of crop and livestock production can reduce the agricultural GHG emission from smallholder farms
por: Xu, Xiangbo, et al.
Publicado: (2023) -
Smallholder Farms and the Potential for Sustainable Intensification
por: Mungai, Leah M., et al.
Publicado: (2016) -
Natural Pest Regulation and Its Compatibility with Other Crop Protection Practices in Smallholder Bean Farming Systems
por: Ndakidemi, Baltazar J., et al.
Publicado: (2021)