Cargando…

Decreased Vitamin D Levels and Altered Placental Vitamin D Gene Expression at High Altitude: Role of Genetic Ancestry

High-altitude hypoxia challenges reproduction; particularly in non-native populations. Although high-altitude residence is associated with vitamin D deficiency, the homeostasis and metabolism of vitamin D in natives and migrants remain unknown. We report that high altitude (3600 m residence) negativ...

Descripción completa

Detalles Bibliográficos
Autores principales: Mata-Greenwood, Eugenia, Westenburg, Hans C. A., Zamudio, Stacy, Illsley, Nicholas P., Zhang, Lubo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967090/
https://www.ncbi.nlm.nih.gov/pubmed/36834800
http://dx.doi.org/10.3390/ijms24043389
Descripción
Sumario:High-altitude hypoxia challenges reproduction; particularly in non-native populations. Although high-altitude residence is associated with vitamin D deficiency, the homeostasis and metabolism of vitamin D in natives and migrants remain unknown. We report that high altitude (3600 m residence) negatively impacted vitamin D levels, with the high-altitude Andeans having the lowest 25-OH-D levels and the high-altitude Europeans having the lowest 1α,25-(OH)(2)-D levels. There was a significant interaction of genetic ancestry with altitude in the ratio of 1α,25-(OH)(2)-D to 25-OH-D; with the ratio being significantly lower in Europeans compared to Andeans living at high altitude. Placental gene expression accounted for as much as 50% of circulating vitamin D levels, with CYP2R1 (25-hydroxylase), CYP27B1 (1α-hydroxylase), CYP24A1 (24-hydroxylase), and LRP2 (megalin) as the major determinants of vitamin D levels. High-altitude residents had a greater correlation between circulating vitamin D levels and placental gene expression than low-altitude residents. Placental 7-dehydrocholesterol reductase and vitamin D receptor were upregulated at high altitude in both genetic-ancestry groups, while megalin and 24-hydroxylase were upregulated only in Europeans. Given that vitamin D deficiency and decreased 1α,25-(OH)(2)-D to 25-OH-D ratios are associated with pregnancy complications, our data support a role for high-altitude-induced vitamin D dysregulation impacting reproductive outcomes, particularly in migrants.