Cargando…

Unique Structure and Distinctive Properties of the Ancient and Ubiquitous Gamma-Type Envelope Glycoprotein

After the onset of the AIDS pandemic, HIV-1 (genus Lentivirus) became the predominant model for studying retrovirus Env glycoproteins and their role in entry. However, HIV Env is an inadequate model for understanding entry of viruses in the Alpharetrovirus, Gammaretrovirus and Deltaretrovirus genera...

Descripción completa

Detalles Bibliográficos
Autores principales: Hogan, Victoria, Johnson, Welkin E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967133/
https://www.ncbi.nlm.nih.gov/pubmed/36851488
http://dx.doi.org/10.3390/v15020274
Descripción
Sumario:After the onset of the AIDS pandemic, HIV-1 (genus Lentivirus) became the predominant model for studying retrovirus Env glycoproteins and their role in entry. However, HIV Env is an inadequate model for understanding entry of viruses in the Alpharetrovirus, Gammaretrovirus and Deltaretrovirus genera. For example, oncogenic model system viruses such as Rous sarcoma virus (RSV, Alpharetrovirus), murine leukemia virus (MLV, Gammaretrovirus) and human T-cell leukemia viruses (HTLV-I and HTLV-II, Deltaretrovirus) encode Envs that are structurally and functionally distinct from HIV Env. We refer to these as Gamma-type Envs. Gamma-type Envs are probably the most widespread retroviral Envs in nature. They are found in exogenous and endogenous retroviruses representing a broad spectrum of vertebrate hosts including amphibians, birds, reptiles, mammals and fish. In endogenous form, gamma-type Envs have been evolutionarily coopted numerous times, most notably as placental syncytins (e.g., human SYNC1 and SYNC2). Remarkably, gamma-type Envs are also found outside of the Retroviridae. Gp2 proteins of filoviruses (e.g., Ebolavirus) and snake arenaviruses in the genus Reptarenavirus are gamma-type Env homologs, products of ancient recombination events involving viruses of different Baltimore classes. Distinctive hallmarks of gamma-type Envs include a labile disulfide bond linking the surface and transmembrane subunits, a multi-stage attachment and fusion mechanism, a highly conserved (but poorly understood) “immunosuppressive domain”, and activation by the viral protease during virion maturation. Here, we synthesize work from diverse retrovirus model systems to illustrate these distinctive properties and to highlight avenues for further exploration of gamma-type Env structure and function.