Cargando…
A Real-Time Polyp-Detection System with Clinical Application in Colonoscopy Using Deep Convolutional Neural Networks
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. The best method to prevent CRC is with a colonoscopy. During this procedure, the gastroenterologist searches for polyps. However, there is a potential risk of polyps being missed by the gastroenterologist. Automated detec...
Autores principales: | Krenzer, Adrian, Banck, Michael, Makowski, Kevin, Hekalo, Amar, Fitting, Daniel, Troya, Joel, Sudarevic, Boban, Zoller, Wolfgang G., Hann, Alexander, Puppe, Frank |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967208/ https://www.ncbi.nlm.nih.gov/pubmed/36826945 http://dx.doi.org/10.3390/jimaging9020026 |
Ejemplares similares
-
Pilot study of a new freely available computer-aided polyp detection system in clinical practice
por: Lux, Thomas J., et al.
Publicado: (2022) -
Fast machine learning annotation in the medical domain: a semi-automated video annotation tool for gastroenterologists
por: Krenzer, Adrian, et al.
Publicado: (2022) -
The influence of computer-aided polyp detection systems on reaction time for polyp detection and eye gaze
por: Troya, Joel, et al.
Publicado: (2022) -
Automated classification of polyps using deep learning architectures and few-shot learning
por: Krenzer, Adrian, et al.
Publicado: (2023) -
Current status and limitations of artificial intelligence in colonoscopy
por: Hann, Alexander, et al.
Publicado: (2021)