Cargando…
A DR/NIR Hybrid Polymeric Tool for Functional Bio-Coatings: Theoretical Study, Cytotoxicity, and Antimicrobial Activity
Among modern biomaterials, hybrid tools containing an organic component and a metal cation are recognized as added value, and, for many advanced biomedical applications, synthetic polymers are used as thin protective/functional coatings for medical or prosthetic devices and implants. These materials...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967255/ https://www.ncbi.nlm.nih.gov/pubmed/36850168 http://dx.doi.org/10.3390/polym15040883 |
Sumario: | Among modern biomaterials, hybrid tools containing an organic component and a metal cation are recognized as added value, and, for many advanced biomedical applications, synthetic polymers are used as thin protective/functional coatings for medical or prosthetic devices and implants. These materials require specific non-degradability, biocompatibility, antimicrobial, and antiproliferative properties to address safety aspects concerning their use in medicine. Moreover, bioimaging monitoring of the biomedical device and/or implant through biological tissues is a desirable ability. This article reports a novel hybrid metallopolymer obtained by grafting zinc-coordinated fragments to an organic polymeric matrix. This hybrid polymer, owing to its relevant emission in the deep red to near-infrared (DR/NIR) region, is monitorable; therefore, it represents a potential material for biomedical coating. Furthermore, it shows good biocompatibility and adhesion properties and excellent stability in slightly acidic/basic water solutions. Finally, in contact with the superficial layers of human skin, it shows antimicrobial properties against Staphylococcus aureus bacterial strains. |
---|