Cargando…
Designing an Embedded Feature Selection Algorithm for a Drowsiness Detector Model Based on Electroencephalogram Data
Driver fatigue reduces the safety of traditional driving and limits the widespread adoption of self-driving cars; hence, the monitoring and early detection of drivers’ drowsiness plays a key role in driving automation. When representing the drowsiness indicators as large feature vectors, fitting a m...
Autores principales: | Bencsik, Blanka, Reményi, István, Szemenyei, Márton, Botzheim, János |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967282/ https://www.ncbi.nlm.nih.gov/pubmed/36850472 http://dx.doi.org/10.3390/s23041874 |
Ejemplares similares
-
Electroencephalogram-Based Approaches for Driver Drowsiness Detection and Management: A Review
por: Li, Gang, et al.
Publicado: (2022) -
Portable Drowsiness Detection through Use of a Prefrontal Single-Channel Electroencephalogram
por: Ogino, Mikito, et al.
Publicado: (2018) -
Transient Topographical Dynamics of the Electroencephalogram Predict Brain Connectivity and Behavioural Responsiveness During Drowsiness
por: Comsa, Iulia M., et al.
Publicado: (2018) -
Drowsiness Analysis Using Common Spatial Pattern and Extreme Learning Machine Based on Electroencephalogram Signal
por: Rahma, Osmalina Nur, et al.
Publicado: (2019) -
Comparison of Eye and Face Features on Drowsiness Analysis
por: Kao, I-Hsi, et al.
Publicado: (2022)