Cargando…
Towards a Machine Learning Driven Trust Management Heuristic for the Internet of Vehicles
The rapid proliferation of the emerging yet promising notion of the Internet-of-Vehicles (IoV) has led to the development of a variety of conventional trust assessment schemes to tackle insider attackers. The primary reliance of these frameworks is on the accumulation of individual trust attributes....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967436/ https://www.ncbi.nlm.nih.gov/pubmed/36850923 http://dx.doi.org/10.3390/s23042325 |
_version_ | 1784897263986802688 |
---|---|
author | Siddiqui, Sarah Ali Mahmood, Adnan Sheng, Quan Z. Suzuki, Hajime Ni, Wei |
author_facet | Siddiqui, Sarah Ali Mahmood, Adnan Sheng, Quan Z. Suzuki, Hajime Ni, Wei |
author_sort | Siddiqui, Sarah Ali |
collection | PubMed |
description | The rapid proliferation of the emerging yet promising notion of the Internet-of-Vehicles (IoV) has led to the development of a variety of conventional trust assessment schemes to tackle insider attackers. The primary reliance of these frameworks is on the accumulation of individual trust attributes. While aggregating these influential parameters, weights are often associated with each individual attribute to reflect its impact on the final trust score. It is of paramount importance that such weights be precise to lead to an accurate trust assessment. Moreover, the value of the minimum acceptable trust threshold employed for the identification of dishonest vehicles needs to be carefully defined to avoid delayed or erroneous detection. This paper employs an IoT data set from CRAWDAD by suitably transforming it into an IoV format. This data set encompasses information regarding 18,226 interactions among 76 nodes, both honest and dishonest. First, the influencing parameters (i.e., packet delivery ratio, familiarity, timeliness and interaction frequency) were computed, and two feature matrices were formed. The first matrix (FM1) takes into account all the pairwise individual parameters as individual features, whereas the second matrix (FM2) considers the average of all pairwise computations performed for each individual parameter as one feature. Subsequently, unsupervised learning is employed to achieve the ground truth prior to applying supervised machine learning algorithms for classification purposes. It is worth noting that Subspace KNN yielded a perfect precision, recall, and the F1-score equal to 1 for individual parametric scores, whereas Subspace Discriminant returned an ideal precision, recall, and the F1-score equal to 1 for mean parametric scores. It is also evident from extensive simulations that FM2 yielded more accurate classification results compared to FM1. Furthermore, decision boundaries among honest and dishonest vehicles have also been computed for respective feature matrices. |
format | Online Article Text |
id | pubmed-9967436 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99674362023-02-27 Towards a Machine Learning Driven Trust Management Heuristic for the Internet of Vehicles Siddiqui, Sarah Ali Mahmood, Adnan Sheng, Quan Z. Suzuki, Hajime Ni, Wei Sensors (Basel) Article The rapid proliferation of the emerging yet promising notion of the Internet-of-Vehicles (IoV) has led to the development of a variety of conventional trust assessment schemes to tackle insider attackers. The primary reliance of these frameworks is on the accumulation of individual trust attributes. While aggregating these influential parameters, weights are often associated with each individual attribute to reflect its impact on the final trust score. It is of paramount importance that such weights be precise to lead to an accurate trust assessment. Moreover, the value of the minimum acceptable trust threshold employed for the identification of dishonest vehicles needs to be carefully defined to avoid delayed or erroneous detection. This paper employs an IoT data set from CRAWDAD by suitably transforming it into an IoV format. This data set encompasses information regarding 18,226 interactions among 76 nodes, both honest and dishonest. First, the influencing parameters (i.e., packet delivery ratio, familiarity, timeliness and interaction frequency) were computed, and two feature matrices were formed. The first matrix (FM1) takes into account all the pairwise individual parameters as individual features, whereas the second matrix (FM2) considers the average of all pairwise computations performed for each individual parameter as one feature. Subsequently, unsupervised learning is employed to achieve the ground truth prior to applying supervised machine learning algorithms for classification purposes. It is worth noting that Subspace KNN yielded a perfect precision, recall, and the F1-score equal to 1 for individual parametric scores, whereas Subspace Discriminant returned an ideal precision, recall, and the F1-score equal to 1 for mean parametric scores. It is also evident from extensive simulations that FM2 yielded more accurate classification results compared to FM1. Furthermore, decision boundaries among honest and dishonest vehicles have also been computed for respective feature matrices. MDPI 2023-02-20 /pmc/articles/PMC9967436/ /pubmed/36850923 http://dx.doi.org/10.3390/s23042325 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Siddiqui, Sarah Ali Mahmood, Adnan Sheng, Quan Z. Suzuki, Hajime Ni, Wei Towards a Machine Learning Driven Trust Management Heuristic for the Internet of Vehicles |
title | Towards a Machine Learning Driven Trust Management Heuristic for the Internet of Vehicles |
title_full | Towards a Machine Learning Driven Trust Management Heuristic for the Internet of Vehicles |
title_fullStr | Towards a Machine Learning Driven Trust Management Heuristic for the Internet of Vehicles |
title_full_unstemmed | Towards a Machine Learning Driven Trust Management Heuristic for the Internet of Vehicles |
title_short | Towards a Machine Learning Driven Trust Management Heuristic for the Internet of Vehicles |
title_sort | towards a machine learning driven trust management heuristic for the internet of vehicles |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967436/ https://www.ncbi.nlm.nih.gov/pubmed/36850923 http://dx.doi.org/10.3390/s23042325 |
work_keys_str_mv | AT siddiquisarahali towardsamachinelearningdriventrustmanagementheuristicfortheinternetofvehicles AT mahmoodadnan towardsamachinelearningdriventrustmanagementheuristicfortheinternetofvehicles AT shengquanz towardsamachinelearningdriventrustmanagementheuristicfortheinternetofvehicles AT suzukihajime towardsamachinelearningdriventrustmanagementheuristicfortheinternetofvehicles AT niwei towardsamachinelearningdriventrustmanagementheuristicfortheinternetofvehicles |