Cargando…

Abalone Viscera Fermented with Aspergillus oryzae 001 Prevents Pressure Elevation by Inhibiting Angiotensin Converting Enzyme

Abalone viscera, which accounts for more than 20% of the total weight of abalone, is generally regarded as waste in the food industry, and effective methods are required to utilize it productively. In this study, the viscera were fermented with Aspergillus oryzae 001 to add functionality. Fermented...

Descripción completa

Detalles Bibliográficos
Autores principales: Iwamoto, Natsumi, Sasaki, Asahi, Maizawa, Tomoaki, Hamada-Sato, Naoko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967480/
https://www.ncbi.nlm.nih.gov/pubmed/36839305
http://dx.doi.org/10.3390/nu15040947
Descripción
Sumario:Abalone viscera, which accounts for more than 20% of the total weight of abalone, is generally regarded as waste in the food industry, and effective methods are required to utilize it productively. In this study, the viscera were fermented with Aspergillus oryzae 001 to add functionality. Fermented abalone viscera exhibited increased angiotensin I-converting enzyme (ACE) inhibitory activity and enhanced inhibition of blood pressure elevation in spontaneously hypertensive rats (SHRs). Abalone viscera administration had no significant effect on body weight, food intake, liver and kidney weights, or serum components in SHRs. ACE inhibitors specific to fermented abalone viscera were identified through extraction, fractionation, purification, and analysis. The identified substance was L-m-tyrosine, which non-competitively inhibited ACE and, in a single oral administration, significantly reduced blood pressure in SHRs compared to that in the control. This study identified that abalone viscera fermented by A. oryzae 001 has an inhibitory effect on blood pressure elevation, suggesting its potential use as a functional food. In addition, L-m-tyrosine, a unique substance in fermented abalone viscera, was isolated for the first time as a single ACE-inhibitory amino acid.