Cargando…
HyFormer: Hybrid Transformer and CNN for Pixel-Level Multispectral Image Land Cover Classification
To effectively solve the problems that most convolutional neural networks cannot be applied to the pixelwise input in remote sensing (RS) classification and cannot adequately represent the spectral sequence information, we propose a new multispectral RS image classification framework called HyFormer...
Autores principales: | Yan, Chuan, Fan, Xiangsuo, Fan, Jinlong, Yu, Ling, Wang, Nayi, Chen, Lin, Li, Xuyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967485/ https://www.ncbi.nlm.nih.gov/pubmed/36833777 http://dx.doi.org/10.3390/ijerph20043059 |
Ejemplares similares
-
Land Cover Classification of UAV Remote Sensing Based on Transformer–CNN Hybrid Architecture
por: Lu, Tingyu, et al.
Publicado: (2023) -
Multispectral LiDAR Data for Land Cover Classification of Urban Areas
por: Morsy, Salem, et al.
Publicado: (2017) -
A Comparative Study of Land Cover Classification by Using Multispectral and Texture Data
por: Qadri, Salman, et al.
Publicado: (2016) -
A Simple Semi-Automatic Approach for Land Cover Classification from Multispectral Remote Sensing Imagery
por: Jiang, Dong, et al.
Publicado: (2012) -
Effective Key Parameter Determination for an Automatic Approach to Land Cover Classification Based on Multispectral Remote Sensing Imagery
por: Wang, Yong, et al.
Publicado: (2013)