Cargando…
Multi-Modal Stacking Ensemble for the Diagnosis of Cardiovascular Diseases
Background: Cardiovascular diseases (CVDs) are a leading cause of death worldwide. Deep learning methods have been widely used in the field of medical image analysis and have shown promising results in the diagnosis of CVDs. Methods: Experiments were performed on 12-lead electrocardiogram (ECG) data...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967487/ https://www.ncbi.nlm.nih.gov/pubmed/36836607 http://dx.doi.org/10.3390/jpm13020373 |
_version_ | 1784897276833955840 |
---|---|
author | Yoon, Taeyoung Kang, Daesung |
author_facet | Yoon, Taeyoung Kang, Daesung |
author_sort | Yoon, Taeyoung |
collection | PubMed |
description | Background: Cardiovascular diseases (CVDs) are a leading cause of death worldwide. Deep learning methods have been widely used in the field of medical image analysis and have shown promising results in the diagnosis of CVDs. Methods: Experiments were performed on 12-lead electrocardiogram (ECG) databases collected by Chapman University and Shaoxing People’s Hospital. The ECG signal of each lead was converted into a scalogram image and an ECG grayscale image and used to fine-tune the pretrained ResNet-50 model of each lead. The ResNet-50 model was used as a base learner for the stacking ensemble method. Logistic regression, support vector machine, random forest, and XGBoost were used as a meta learner by combining the predictions of the base learner. The study introduced a method called multi-modal stacking ensemble, which involves training a meta learner through a stacking ensemble that combines predictions from two modalities: scalogram images and ECG grayscale images. Results: The multi-modal stacking ensemble with a combination of ResNet-50 and logistic regression achieved an AUC of 0.995, an accuracy of 93.97%, a sensitivity of 0.940, a precision of 0.937, and an F1-score of 0.936, which are higher than those of LSTM, BiLSTM, individual base learners, simple averaging ensemble, and single-modal stacking ensemble methods. Conclusion: The proposed multi-modal stacking ensemble approach showed effectiveness for diagnosing CVDs. |
format | Online Article Text |
id | pubmed-9967487 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99674872023-02-27 Multi-Modal Stacking Ensemble for the Diagnosis of Cardiovascular Diseases Yoon, Taeyoung Kang, Daesung J Pers Med Article Background: Cardiovascular diseases (CVDs) are a leading cause of death worldwide. Deep learning methods have been widely used in the field of medical image analysis and have shown promising results in the diagnosis of CVDs. Methods: Experiments were performed on 12-lead electrocardiogram (ECG) databases collected by Chapman University and Shaoxing People’s Hospital. The ECG signal of each lead was converted into a scalogram image and an ECG grayscale image and used to fine-tune the pretrained ResNet-50 model of each lead. The ResNet-50 model was used as a base learner for the stacking ensemble method. Logistic regression, support vector machine, random forest, and XGBoost were used as a meta learner by combining the predictions of the base learner. The study introduced a method called multi-modal stacking ensemble, which involves training a meta learner through a stacking ensemble that combines predictions from two modalities: scalogram images and ECG grayscale images. Results: The multi-modal stacking ensemble with a combination of ResNet-50 and logistic regression achieved an AUC of 0.995, an accuracy of 93.97%, a sensitivity of 0.940, a precision of 0.937, and an F1-score of 0.936, which are higher than those of LSTM, BiLSTM, individual base learners, simple averaging ensemble, and single-modal stacking ensemble methods. Conclusion: The proposed multi-modal stacking ensemble approach showed effectiveness for diagnosing CVDs. MDPI 2023-02-20 /pmc/articles/PMC9967487/ /pubmed/36836607 http://dx.doi.org/10.3390/jpm13020373 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yoon, Taeyoung Kang, Daesung Multi-Modal Stacking Ensemble for the Diagnosis of Cardiovascular Diseases |
title | Multi-Modal Stacking Ensemble for the Diagnosis of Cardiovascular Diseases |
title_full | Multi-Modal Stacking Ensemble for the Diagnosis of Cardiovascular Diseases |
title_fullStr | Multi-Modal Stacking Ensemble for the Diagnosis of Cardiovascular Diseases |
title_full_unstemmed | Multi-Modal Stacking Ensemble for the Diagnosis of Cardiovascular Diseases |
title_short | Multi-Modal Stacking Ensemble for the Diagnosis of Cardiovascular Diseases |
title_sort | multi-modal stacking ensemble for the diagnosis of cardiovascular diseases |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967487/ https://www.ncbi.nlm.nih.gov/pubmed/36836607 http://dx.doi.org/10.3390/jpm13020373 |
work_keys_str_mv | AT yoontaeyoung multimodalstackingensembleforthediagnosisofcardiovasculardiseases AT kangdaesung multimodalstackingensembleforthediagnosisofcardiovasculardiseases |