Cargando…
Artificial Intelligence Software for Diabetic Eye Screening: Diagnostic Performance and Impact of Stratification
Aim: To evaluate the MONA.health artificial intelligence screening software for detecting referable diabetic retinopathy (DR) and diabetic macular edema (DME), including subgroup analysis. Methods: The algorithm’s threshold value was fixed at the 90% sensitivity operating point on the receiver opera...
Autores principales: | Peeters, Freya, Rommes, Stef, Elen, Bart, Gerrits, Nele, Stalmans, Ingeborg, Jacob, Julie, De Boever, Patrick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967595/ https://www.ncbi.nlm.nih.gov/pubmed/36835942 http://dx.doi.org/10.3390/jcm12041408 |
Ejemplares similares
-
Systematic Comparison of Heatmapping Techniques in Deep Learning in the Context of Diabetic Retinopathy Lesion Detection
por: Van Craenendonck, Toon, et al.
Publicado: (2020) -
Deep learning on fundus images detects glaucoma beyond the optic disc
por: Hemelings, Ruben, et al.
Publicado: (2021) -
Pointwise Visual Field Estimation From Optical Coherence Tomography in Glaucoma Using Deep Learning
por: Hemelings, Ruben, et al.
Publicado: (2022) -
Age‐related changes in the fractal dimension of the retinal microvasculature, effects of cardiovascular risk factors and smoking behaviour
por: Lemmens, Sophie, et al.
Publicado: (2021) -
Age and sex affect deep learning prediction of cardiometabolic risk factors from retinal images
por: Gerrits, Nele, et al.
Publicado: (2020)