Cargando…
Intraclass Image Augmentation for Defect Detection Using Generative Adversarial Neural Networks
Surface defect identification based on computer vision algorithms often leads to inadequate generalization ability due to large intraclass variation. Diversity in lighting conditions, noise components, defect size, shape, and position make the problem challenging. To solve the problem, this paper de...
Autores principales: | Sampath, Vignesh, Maurtua, Iñaki, Aguilar Martín, Juan José, Iriondo, Ander, Lluvia, Iker, Aizpurua, Gotzone |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967620/ https://www.ncbi.nlm.nih.gov/pubmed/36850460 http://dx.doi.org/10.3390/s23041861 |
Ejemplares similares
-
A survey on generative adversarial networks for imbalance problems in computer vision tasks
por: Sampath, Vignesh, et al.
Publicado: (2021) -
Seismic Data Augmentation Based on Conditional Generative Adversarial Networks
por: Li, Yuanming, et al.
Publicado: (2020) -
Robust Data Augmentation Generative Adversarial Network for Object Detection
por: Lee, Hyungtak, et al.
Publicado: (2022) -
Multichannel One-Dimensional Data Augmentation with Generative Adversarial Network
por: Kosasih, David Ishak, et al.
Publicado: (2023) -
Intraclass grouping in the elementary school
por: Petty, Mary Clare
Publicado: (1912)