Cargando…

Internet of Things (IoT) for Soil Moisture Tensiometer Automation

Monitoring of water retention behavior in soils is an essential process to schedule irrigation. To this end, soil moisture tensiometers usually equipped with mechanical manometers provide an easy and cost-effective monitoring of tension in unsaturated soils. Yet, periodic manual monitoring of many d...

Descripción completa

Detalles Bibliográficos
Autores principales: Abdelmoneim, Ahmed Ali, Khadra, Roula, Derardja, Bilal, Dragonetti, Giovanna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967655/
https://www.ncbi.nlm.nih.gov/pubmed/36837963
http://dx.doi.org/10.3390/mi14020263
Descripción
Sumario:Monitoring of water retention behavior in soils is an essential process to schedule irrigation. To this end, soil moisture tensiometers usually equipped with mechanical manometers provide an easy and cost-effective monitoring of tension in unsaturated soils. Yet, periodic manual monitoring of many devices is a tedious task hindering the full exploitation of soil moisture tensiometers. This research develops and lab validates a low cost IoT soil moisture tensiometer. The IoT-prototype is capable of measuring tension up to −80 Kpa with R(2) = 0.99 as compared to the same tensiometer equipped with a mechanical manometer. It uses an ESP32 MCU, BMP180 barometric sensor and an SD card module to upload the measured points to a cloud service platform and establishes an online soil water potential curve. Moreover, it stores the reading on a micro-SD card as txt file. Being relatively cheap (76 USD) the prototype allows for more extensive measurements and, thus, for several potential applications such as soil water matric potential mapping, precision irrigation, and smart irrigation scheduling. In terms of energy, the prototype is totally autonomous, using a 2400 mAh Li-ion battery and a solar panel for charging, knowing that it uses deep sleep feature and sends three data points to the cloud each 6 h.