Cargando…
Electrokinetic Properties of Mesoporous Vitreous Membranes Doped by Silver-Silver Halides
Silver/silver halide materials are considered as efficient and highly stable plasmonic photocatalysts for the organic pollutant degradation and hydrogen evolution from water splitting under solar irradiation, and they possess promising antibacterial activity. Ordered mesoporous silica materials incl...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967661/ https://www.ncbi.nlm.nih.gov/pubmed/36837629 http://dx.doi.org/10.3390/membranes13020126 |
_version_ | 1784897320467300352 |
---|---|
author | Ermakova, Ludmila Kuznetsova, Anastasiia Girsova, Marina Volkova, Anna Antropova, Tatiana |
author_facet | Ermakova, Ludmila Kuznetsova, Anastasiia Girsova, Marina Volkova, Anna Antropova, Tatiana |
author_sort | Ermakova, Ludmila |
collection | PubMed |
description | Silver/silver halide materials are considered as efficient and highly stable plasmonic photocatalysts for the organic pollutant degradation and hydrogen evolution from water splitting under solar irradiation, and they possess promising antibacterial activity. Ordered mesoporous silica materials including porous glasses are considered as the most promising template for silver-containing structures. In the present work, Ag/AgHal-doped (Hal = Cl, Br) vitreous membranes on a base of the mesoporous glasses were prepared via step-by-step single-stage impregnation procedure. The chemical and phase composition of the modified membranes were identified by the X-ray photoelectron spectroscopy, the X-ray diffraction and the energy-dispersive X-ray spectroscopy. The structure and morphology of inner membrane space were studied by the scanning electron microscopy. Electrokinetic properties of the silver-containing vitreous membranes were determined by the differential method and the streaming potential method. The inner membrane space is modified unevenly with appearance of the clearly defined regions with different silver content. The formation of the Ag/AgCl clusters along with the individual nanoparticles over thickness of the 1-mm membrane with mean pore radius of 23 nm was detected. The modification of the pore space by Ag-containing structures and the type of halogen ion almost do not affect the electrochemical behavior of the mesoporous vitreous membranes. |
format | Online Article Text |
id | pubmed-9967661 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99676612023-02-27 Electrokinetic Properties of Mesoporous Vitreous Membranes Doped by Silver-Silver Halides Ermakova, Ludmila Kuznetsova, Anastasiia Girsova, Marina Volkova, Anna Antropova, Tatiana Membranes (Basel) Article Silver/silver halide materials are considered as efficient and highly stable plasmonic photocatalysts for the organic pollutant degradation and hydrogen evolution from water splitting under solar irradiation, and they possess promising antibacterial activity. Ordered mesoporous silica materials including porous glasses are considered as the most promising template for silver-containing structures. In the present work, Ag/AgHal-doped (Hal = Cl, Br) vitreous membranes on a base of the mesoporous glasses were prepared via step-by-step single-stage impregnation procedure. The chemical and phase composition of the modified membranes were identified by the X-ray photoelectron spectroscopy, the X-ray diffraction and the energy-dispersive X-ray spectroscopy. The structure and morphology of inner membrane space were studied by the scanning electron microscopy. Electrokinetic properties of the silver-containing vitreous membranes were determined by the differential method and the streaming potential method. The inner membrane space is modified unevenly with appearance of the clearly defined regions with different silver content. The formation of the Ag/AgCl clusters along with the individual nanoparticles over thickness of the 1-mm membrane with mean pore radius of 23 nm was detected. The modification of the pore space by Ag-containing structures and the type of halogen ion almost do not affect the electrochemical behavior of the mesoporous vitreous membranes. MDPI 2023-01-19 /pmc/articles/PMC9967661/ /pubmed/36837629 http://dx.doi.org/10.3390/membranes13020126 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ermakova, Ludmila Kuznetsova, Anastasiia Girsova, Marina Volkova, Anna Antropova, Tatiana Electrokinetic Properties of Mesoporous Vitreous Membranes Doped by Silver-Silver Halides |
title | Electrokinetic Properties of Mesoporous Vitreous Membranes Doped by Silver-Silver Halides |
title_full | Electrokinetic Properties of Mesoporous Vitreous Membranes Doped by Silver-Silver Halides |
title_fullStr | Electrokinetic Properties of Mesoporous Vitreous Membranes Doped by Silver-Silver Halides |
title_full_unstemmed | Electrokinetic Properties of Mesoporous Vitreous Membranes Doped by Silver-Silver Halides |
title_short | Electrokinetic Properties of Mesoporous Vitreous Membranes Doped by Silver-Silver Halides |
title_sort | electrokinetic properties of mesoporous vitreous membranes doped by silver-silver halides |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967661/ https://www.ncbi.nlm.nih.gov/pubmed/36837629 http://dx.doi.org/10.3390/membranes13020126 |
work_keys_str_mv | AT ermakovaludmila electrokineticpropertiesofmesoporousvitreousmembranesdopedbysilversilverhalides AT kuznetsovaanastasiia electrokineticpropertiesofmesoporousvitreousmembranesdopedbysilversilverhalides AT girsovamarina electrokineticpropertiesofmesoporousvitreousmembranesdopedbysilversilverhalides AT volkovaanna electrokineticpropertiesofmesoporousvitreousmembranesdopedbysilversilverhalides AT antropovatatiana electrokineticpropertiesofmesoporousvitreousmembranesdopedbysilversilverhalides |