Cargando…
Trivalent SARS-CoV-2 S1 Subunit Protein Vaccination Induces Broad Humoral Responses in BALB/c Mice
This paper presents a novel approach for improving the efficacy of COVID-19 vaccines against emergent SARS-CoV-2 variants. We have evaluated the immunogenicity of unadjuvanted wild-type (WU S1-RS09cg) and variant-specific (Delta S1-RS09cg and OM S1-RS09cg) S1 subunit protein vaccines delivered eithe...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967783/ https://www.ncbi.nlm.nih.gov/pubmed/36851191 http://dx.doi.org/10.3390/vaccines11020314 |
Sumario: | This paper presents a novel approach for improving the efficacy of COVID-19 vaccines against emergent SARS-CoV-2 variants. We have evaluated the immunogenicity of unadjuvanted wild-type (WU S1-RS09cg) and variant-specific (Delta S1-RS09cg and OM S1-RS09cg) S1 subunit protein vaccines delivered either as a monovalent or a trivalent antigen in BALB/c mice. Our results show that a trivalent approach induced a broader humoral response with more coverage against antigenically distinct variants, especially when compared to monovalent Omicron-specific S1. This trivalent approach was also found to have increased or equivalent ACE2 binding inhibition, and increased S1 IgG endpoint titer at early timepoints, against SARS-CoV-2 spike variants when compared monovalent Wuhan, Delta, or Omicron S1. Our results demonstrate the utility of protein subunit vaccines against COVID-19 and provide insights into the impact of variant-specific COVID-19 vaccine approaches on the immune response in the current SARS-CoV-2 variant landscape. Particularly, our study provides insight into effects of further increasing valency of currently approved SARS-CoV-2 vaccines, a promising approach for improving protection to curtail emerging viral variants. |
---|