Cargando…
Granular Disulfide-Crosslinked Hyaluronic Hydrogels: A Systematic Study of Reaction Conditions on Thiol Substitution and Injectability Parameters
Granular polymer hydrogels based on dynamic covalent bonds are attracting a great deal of interest for the design of injectable biomaterials. Such materials generally exhibit shear-thinning behavior and properties of self-healing/recovery after the extrusion that can be modulated through the interac...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967816/ https://www.ncbi.nlm.nih.gov/pubmed/36850248 http://dx.doi.org/10.3390/polym15040966 |
_version_ | 1784897359493201920 |
---|---|
author | Pérez, Luis Andrés Hernández, Rebeca Alonso, José María Pérez-González, Raúl Sáez-Martínez, Virginia |
author_facet | Pérez, Luis Andrés Hernández, Rebeca Alonso, José María Pérez-González, Raúl Sáez-Martínez, Virginia |
author_sort | Pérez, Luis Andrés |
collection | PubMed |
description | Granular polymer hydrogels based on dynamic covalent bonds are attracting a great deal of interest for the design of injectable biomaterials. Such materials generally exhibit shear-thinning behavior and properties of self-healing/recovery after the extrusion that can be modulated through the interactions between gel microparticles. Herein, bulk macro-hydrogels based on thiolated-hyaluronic acid were produced by disulphide bond formation using oxygen as oxidant at physiological conditions and gelation kinetics were monitored. Three different thiol substitution degrees (SD%: 65%, 30% and 10%) were selected for hydrogel formation and fully characterized as to their stability in physiological medium and morphology. Then, extrusion fragmentation technique was applied to obtain hyaluronic acid microgels with dynamic disulphide bonds that were subsequently sterilized by autoclaving. The resulting granular hyaluronic hydrogels were able to form stable filaments when extruded through a syringe. Rheological characterization and cytotoxicity tests allowed to assess the potential of these materials as injectable biomaterials. The application of extrusion fragmentation for the formation of granular hyaluronic hydrogels and the understanding of the relation between the autoclaving processes and the resulting particle size and rheological properties should expand the development of injectable materials for biomedical applications. |
format | Online Article Text |
id | pubmed-9967816 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99678162023-02-27 Granular Disulfide-Crosslinked Hyaluronic Hydrogels: A Systematic Study of Reaction Conditions on Thiol Substitution and Injectability Parameters Pérez, Luis Andrés Hernández, Rebeca Alonso, José María Pérez-González, Raúl Sáez-Martínez, Virginia Polymers (Basel) Article Granular polymer hydrogels based on dynamic covalent bonds are attracting a great deal of interest for the design of injectable biomaterials. Such materials generally exhibit shear-thinning behavior and properties of self-healing/recovery after the extrusion that can be modulated through the interactions between gel microparticles. Herein, bulk macro-hydrogels based on thiolated-hyaluronic acid were produced by disulphide bond formation using oxygen as oxidant at physiological conditions and gelation kinetics were monitored. Three different thiol substitution degrees (SD%: 65%, 30% and 10%) were selected for hydrogel formation and fully characterized as to their stability in physiological medium and morphology. Then, extrusion fragmentation technique was applied to obtain hyaluronic acid microgels with dynamic disulphide bonds that were subsequently sterilized by autoclaving. The resulting granular hyaluronic hydrogels were able to form stable filaments when extruded through a syringe. Rheological characterization and cytotoxicity tests allowed to assess the potential of these materials as injectable biomaterials. The application of extrusion fragmentation for the formation of granular hyaluronic hydrogels and the understanding of the relation between the autoclaving processes and the resulting particle size and rheological properties should expand the development of injectable materials for biomedical applications. MDPI 2023-02-15 /pmc/articles/PMC9967816/ /pubmed/36850248 http://dx.doi.org/10.3390/polym15040966 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pérez, Luis Andrés Hernández, Rebeca Alonso, José María Pérez-González, Raúl Sáez-Martínez, Virginia Granular Disulfide-Crosslinked Hyaluronic Hydrogels: A Systematic Study of Reaction Conditions on Thiol Substitution and Injectability Parameters |
title | Granular Disulfide-Crosslinked Hyaluronic Hydrogels: A Systematic Study of Reaction Conditions on Thiol Substitution and Injectability Parameters |
title_full | Granular Disulfide-Crosslinked Hyaluronic Hydrogels: A Systematic Study of Reaction Conditions on Thiol Substitution and Injectability Parameters |
title_fullStr | Granular Disulfide-Crosslinked Hyaluronic Hydrogels: A Systematic Study of Reaction Conditions on Thiol Substitution and Injectability Parameters |
title_full_unstemmed | Granular Disulfide-Crosslinked Hyaluronic Hydrogels: A Systematic Study of Reaction Conditions on Thiol Substitution and Injectability Parameters |
title_short | Granular Disulfide-Crosslinked Hyaluronic Hydrogels: A Systematic Study of Reaction Conditions on Thiol Substitution and Injectability Parameters |
title_sort | granular disulfide-crosslinked hyaluronic hydrogels: a systematic study of reaction conditions on thiol substitution and injectability parameters |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967816/ https://www.ncbi.nlm.nih.gov/pubmed/36850248 http://dx.doi.org/10.3390/polym15040966 |
work_keys_str_mv | AT perezluisandres granulardisulfidecrosslinkedhyaluronichydrogelsasystematicstudyofreactionconditionsonthiolsubstitutionandinjectabilityparameters AT hernandezrebeca granulardisulfidecrosslinkedhyaluronichydrogelsasystematicstudyofreactionconditionsonthiolsubstitutionandinjectabilityparameters AT alonsojosemaria granulardisulfidecrosslinkedhyaluronichydrogelsasystematicstudyofreactionconditionsonthiolsubstitutionandinjectabilityparameters AT perezgonzalezraul granulardisulfidecrosslinkedhyaluronichydrogelsasystematicstudyofreactionconditionsonthiolsubstitutionandinjectabilityparameters AT saezmartinezvirginia granulardisulfidecrosslinkedhyaluronichydrogelsasystematicstudyofreactionconditionsonthiolsubstitutionandinjectabilityparameters |