Cargando…
Enhancing Clinical Data Analysis by Explaining Interaction Effects between Covariates in Deep Neural Network Models
Deep neural network (DNN) is a powerful technology that is being utilized by a growing number and range of research projects, including disease risk prediction models. One of the key strengths of DNN is its ability to model non-linear relationships, which include covariate interactions. We developed...
Autores principales: | Shao, Yijun, Ahmed, Ali, Zamrini, Edward Y., Cheng, Yan, Goulet, Joseph L., Zeng-Treitler, Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967882/ https://www.ncbi.nlm.nih.gov/pubmed/36836451 http://dx.doi.org/10.3390/jpm13020217 |
Ejemplares similares
-
Medication-Wide Association Study Plus (MWAS+): A Proof of Concept Study on Drug Repurposing
por: Cheng, Yan, et al.
Publicado: (2022) -
Hybrid Value-Aware Transformer Architecture for Joint Learning from Longitudinal and Non-Longitudinal Clinical Data
por: Shao, Yijun, et al.
Publicado: (2023) -
Hybrid Value-Aware Transformer Architecture for Joint Learning from Longitudinal and Non-Longitudinal Clinical Data
por: Shao, Yijun, et al.
Publicado: (2023) -
Alzheimer’s Disease and Alzheimer’s Disease-Related Dementias in Older African American and White Veterans
por: Cheng, Yan, et al.
Publicado: (2020) -
Explainable Brain Age Prediction using coVariance Neural Networks
por: Sihag, Saurabh, et al.
Publicado: (2023)