Cargando…
Brickognize: Applying Photo-Realistic Image Synthesis for Lego Bricks Recognition with Limited Data
During the last few years, supervised deep convolutional neural networks have become the state-of-the-art for image recognition tasks. Nevertheless, their performance is severely linked to the amount and quality of the training data. Acquiring and labeling data is a major challenge that limits their...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967933/ https://www.ncbi.nlm.nih.gov/pubmed/36850495 http://dx.doi.org/10.3390/s23041898 |
Sumario: | During the last few years, supervised deep convolutional neural networks have become the state-of-the-art for image recognition tasks. Nevertheless, their performance is severely linked to the amount and quality of the training data. Acquiring and labeling data is a major challenge that limits their expansion to new applications, especially with limited data. Recognition of Lego bricks is a clear example of a real-world deep learning application that has been limited by the difficulties associated with data gathering and training. In this work, photo-realistic image synthesis and few-shot fine-tuning are proposed to overcome limited data in the context of Lego bricks recognition. Using synthetic images and a limited set of 20 real-world images from a controlled environment, the proposed system is evaluated on controlled and uncontrolled real-world testing datasets. Results show the good performance of the synthetically generated data and how limited data from a controlled domain can be successfully used for the few-shot fine-tuning of the synthetic training without a perceptible narrowing of its domain. Obtained results reach an AP50 value of 91.33% for uncontrolled scenarios and 98.7% for controlled ones. |
---|