Cargando…

Effect of Methionine Hydroxy Analog on Hu Sheep Digestibility, Rumen Fermentation, and Rumen Microbial Community In Vitro

This experiment was conducted to evaluate the effects of a methionine hydroxy analog (MHA) on in vitro gas production, rumen fermentation parameters, and rumen microbiota. Two different MHA, 2-hydroxy-4-(methylthio) butanoic acid isopropyl ester (HMBi) and the calcium salt of the hydroxy analog of m...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Shujie, Zeng, Hanfang, Wang, Changjian, Han, Zhaoyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9968006/
https://www.ncbi.nlm.nih.gov/pubmed/36837788
http://dx.doi.org/10.3390/metabo13020169
Descripción
Sumario:This experiment was conducted to evaluate the effects of a methionine hydroxy analog (MHA) on in vitro gas production, rumen fermentation parameters, and rumen microbiota. Two different MHA, 2-hydroxy-4-(methylthio) butanoic acid isopropyl ester (HMBi) and the calcium salt of the hydroxy analog of methionine (MHA-Ca), were selected for in vitro experiments. The treatments were the Control group (0% of MHA), HMBi group (2%HMBi), and MHA-Ca group (2%MHA-Ca). Dry matter digestibility was measured after 12 h and 24 h of fermentation, and fermentation parameters and microbial composition were analyzed after 24 h. HMBi and MHA-Ca showed increased (p = 0.001) cumulative gas production in 3 h. The total volatile fatty acids, microbial protein (MCP) concentration, acetate, and acetate to propionate ratio in the HMBi and MHA-Ca groups were significantly higher than those in the Control group (p = 0.006, p = 0.002, p = 0.001, p = 0.004), and the NH(3)-N concentrations in the HMBi and MHA-Ca groups were significantly lower than those in the Control group (p = 0.004). The 16S rRNA sequencing revealed that the HMBi group had a higher (p = 0.039, p = 0.001, p = 0.027) relative abundance of Bacteroidetes, Firmicutes, and Synergistetes and a lower relative abundance of Proteobacteria (p = 0.001) than the Control group. At the genus level, Prevotella abundance was higher (p = 0.001), while Ruminobacter abundance was lower (p = 0.001), in the HMBi and MHA-Ca groups than in the Control group. Spearman’s correlation analysis showed that the relative abundance of Prevotella_1, Streptococcus, and Desulfovibrio was positively correlated with dry matter digestibility, MCP, and fermentation parameters. MHA, thus, significantly increased gas production and altered the rumen fermentation parameters and microbiota composition of sheep.