Cargando…
Experimental Validation of MHC Class I and II Peptide-Based Potential Vaccine Candidates for Human Papilloma Virus Using Sprague-Dawly Models
Human papilloma virus (HPV) causes cervical and many other cancers. Recent trend in vaccine design is shifted toward epitope-based developments that are more specific, safe, and easy to produce. In this study, we predicted eight immunogenic peptides of CD4+ and CD8+ T-lymphocytes (MHC class I and II...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9968051/ https://www.ncbi.nlm.nih.gov/pubmed/36838675 http://dx.doi.org/10.3390/molecules28041687 |
_version_ | 1784897418425270272 |
---|---|
author | Ismail, Mehreen Bai, Baogang Guo, Jinlei Bai, Yuhui Sajid, Zureesha Muhammad, Syed Aun Shaikh, Rehan Sadiq |
author_facet | Ismail, Mehreen Bai, Baogang Guo, Jinlei Bai, Yuhui Sajid, Zureesha Muhammad, Syed Aun Shaikh, Rehan Sadiq |
author_sort | Ismail, Mehreen |
collection | PubMed |
description | Human papilloma virus (HPV) causes cervical and many other cancers. Recent trend in vaccine design is shifted toward epitope-based developments that are more specific, safe, and easy to produce. In this study, we predicted eight immunogenic peptides of CD4+ and CD8+ T-lymphocytes (MHC class I and II as M1 and M2) including early proteins (E2 and E6), major (L1) and minor capsid protein (L2). Male and female Sprague Dawly rats in groups were immunized with each synthetic peptide. L1M1, L1M2, L2M1, and L2M2 induced significant immunogenic response compared to E2M1, E2M2, E6M1 and E6M2. We observed optimal titer of IgG antibodies (>1.25 g/L), interferon-γ (>64 ng/L), and granzyme-B (>40 pg/mL) compared to control at second booster dose (240 µg/500 µL). The induction of peptide-specific IgG antibodies in immunized rats indicates the T-cell dependent B-lymphocyte activation. A substantial CD4+ and CD8+ cell count was observed at 240 µg/500 µL. In male and female rats, CD8+ cell count for L1 and L2 peptide is 3000 and 3118, and CD4+ is 3369 and 3484 respectively compared to control. In conclusion, we demonstrated that L1M1, L1M2, L2M1, L2M2 are likely to contain potential epitopes for induction of immune responses supporting the feasibility of peptide-based vaccine development for HPV. |
format | Online Article Text |
id | pubmed-9968051 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99680512023-02-27 Experimental Validation of MHC Class I and II Peptide-Based Potential Vaccine Candidates for Human Papilloma Virus Using Sprague-Dawly Models Ismail, Mehreen Bai, Baogang Guo, Jinlei Bai, Yuhui Sajid, Zureesha Muhammad, Syed Aun Shaikh, Rehan Sadiq Molecules Article Human papilloma virus (HPV) causes cervical and many other cancers. Recent trend in vaccine design is shifted toward epitope-based developments that are more specific, safe, and easy to produce. In this study, we predicted eight immunogenic peptides of CD4+ and CD8+ T-lymphocytes (MHC class I and II as M1 and M2) including early proteins (E2 and E6), major (L1) and minor capsid protein (L2). Male and female Sprague Dawly rats in groups were immunized with each synthetic peptide. L1M1, L1M2, L2M1, and L2M2 induced significant immunogenic response compared to E2M1, E2M2, E6M1 and E6M2. We observed optimal titer of IgG antibodies (>1.25 g/L), interferon-γ (>64 ng/L), and granzyme-B (>40 pg/mL) compared to control at second booster dose (240 µg/500 µL). The induction of peptide-specific IgG antibodies in immunized rats indicates the T-cell dependent B-lymphocyte activation. A substantial CD4+ and CD8+ cell count was observed at 240 µg/500 µL. In male and female rats, CD8+ cell count for L1 and L2 peptide is 3000 and 3118, and CD4+ is 3369 and 3484 respectively compared to control. In conclusion, we demonstrated that L1M1, L1M2, L2M1, L2M2 are likely to contain potential epitopes for induction of immune responses supporting the feasibility of peptide-based vaccine development for HPV. MDPI 2023-02-10 /pmc/articles/PMC9968051/ /pubmed/36838675 http://dx.doi.org/10.3390/molecules28041687 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ismail, Mehreen Bai, Baogang Guo, Jinlei Bai, Yuhui Sajid, Zureesha Muhammad, Syed Aun Shaikh, Rehan Sadiq Experimental Validation of MHC Class I and II Peptide-Based Potential Vaccine Candidates for Human Papilloma Virus Using Sprague-Dawly Models |
title | Experimental Validation of MHC Class I and II Peptide-Based Potential Vaccine Candidates for Human Papilloma Virus Using Sprague-Dawly Models |
title_full | Experimental Validation of MHC Class I and II Peptide-Based Potential Vaccine Candidates for Human Papilloma Virus Using Sprague-Dawly Models |
title_fullStr | Experimental Validation of MHC Class I and II Peptide-Based Potential Vaccine Candidates for Human Papilloma Virus Using Sprague-Dawly Models |
title_full_unstemmed | Experimental Validation of MHC Class I and II Peptide-Based Potential Vaccine Candidates for Human Papilloma Virus Using Sprague-Dawly Models |
title_short | Experimental Validation of MHC Class I and II Peptide-Based Potential Vaccine Candidates for Human Papilloma Virus Using Sprague-Dawly Models |
title_sort | experimental validation of mhc class i and ii peptide-based potential vaccine candidates for human papilloma virus using sprague-dawly models |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9968051/ https://www.ncbi.nlm.nih.gov/pubmed/36838675 http://dx.doi.org/10.3390/molecules28041687 |
work_keys_str_mv | AT ismailmehreen experimentalvalidationofmhcclassiandiipeptidebasedpotentialvaccinecandidatesforhumanpapillomavirususingspraguedawlymodels AT baibaogang experimentalvalidationofmhcclassiandiipeptidebasedpotentialvaccinecandidatesforhumanpapillomavirususingspraguedawlymodels AT guojinlei experimentalvalidationofmhcclassiandiipeptidebasedpotentialvaccinecandidatesforhumanpapillomavirususingspraguedawlymodels AT baiyuhui experimentalvalidationofmhcclassiandiipeptidebasedpotentialvaccinecandidatesforhumanpapillomavirususingspraguedawlymodels AT sajidzureesha experimentalvalidationofmhcclassiandiipeptidebasedpotentialvaccinecandidatesforhumanpapillomavirususingspraguedawlymodels AT muhammadsyedaun experimentalvalidationofmhcclassiandiipeptidebasedpotentialvaccinecandidatesforhumanpapillomavirususingspraguedawlymodels AT shaikhrehansadiq experimentalvalidationofmhcclassiandiipeptidebasedpotentialvaccinecandidatesforhumanpapillomavirususingspraguedawlymodels |