Cargando…
Neural Networks Application for Accurate Retina Vessel Segmentation from OCT Fundus Reconstruction
The use of neural networks for retinal vessel segmentation has gained significant attention in recent years. Most of the research related to the segmentation of retinal blood vessels is based on fundus images. In this study, we examine five neural network architectures to accurately segment vessels...
Autores principales: | Marciniak, Tomasz, Stankiewicz, Agnieszka, Zaradzki, Przemyslaw |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9968084/ https://www.ncbi.nlm.nih.gov/pubmed/36850467 http://dx.doi.org/10.3390/s23041870 |
Ejemplares similares
-
Segmentation of Preretinal Space in Optical Coherence Tomography Images Using Deep Neural Networks
por: Stankiewicz, Agnieszka, et al.
Publicado: (2021) -
Registration of OCT fundus images with color fundus photographs based on blood vessel ridges
por: Li, Ying, et al.
Publicado: (2010) -
Robust Vessel Segmentation in Fundus Images
por: Budai, A., et al.
Publicado: (2013) -
Multi-Task Segmentation and Classification Network for Artery/Vein Classification in Retina Fundus
por: Yi, Junyan, et al.
Publicado: (2023) -
Synthetic OCT-A blood vessel maps using fundus images and generative adversarial networks
por: Coronado, Ivan, et al.
Publicado: (2023)