Cargando…

An Explainable Spatial-Temporal Graphical Convolutional Network to Score Freezing of Gait in Parkinsonian Patients

Freezing of gait (FOG) is a poorly understood heterogeneous gait disorder seen in patients with parkinsonism which contributes to significant morbidity and social isolation. FOG is currently measured with scales that are typically performed by movement disorders specialists (i.e., MDS-UPDRS), or thr...

Descripción completa

Detalles Bibliográficos
Autores principales: Kwon, Hyeokhyen, Clifford, Gari D., Genias, Imari, Bernhard, Doug, Esper, Christine D., Factor, Stewart A., McKay, J. Lucas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9968199/
https://www.ncbi.nlm.nih.gov/pubmed/36850363
http://dx.doi.org/10.3390/s23041766
_version_ 1784897455151644672
author Kwon, Hyeokhyen
Clifford, Gari D.
Genias, Imari
Bernhard, Doug
Esper, Christine D.
Factor, Stewart A.
McKay, J. Lucas
author_facet Kwon, Hyeokhyen
Clifford, Gari D.
Genias, Imari
Bernhard, Doug
Esper, Christine D.
Factor, Stewart A.
McKay, J. Lucas
author_sort Kwon, Hyeokhyen
collection PubMed
description Freezing of gait (FOG) is a poorly understood heterogeneous gait disorder seen in patients with parkinsonism which contributes to significant morbidity and social isolation. FOG is currently measured with scales that are typically performed by movement disorders specialists (i.e., MDS-UPDRS), or through patient completed questionnaires (N-FOG-Q) both of which are inadequate in addressing the heterogeneous nature of the disorder and are unsuitable for use in clinical trials The purpose of this study was to devise a method to measure FOG objectively, hence improving our ability to identify it and accurately evaluate new therapies. A major innovation of our study is that it is the first study of its kind that uses the largest sample size (>30 h, N = 57) in order to apply explainable, multi-task deep learning models for quantifying FOG over the course of the medication cycle and at varying levels of parkinsonism severity. We trained interpretable deep learning models with multi-task learning to simultaneously score FOG (cross-validated F1 score 97.6%), identify medication state (OFF vs. ON levodopa; cross-validated F1 score 96.8%), and measure total PD severity (MDS-UPDRS-III score prediction error ≤ 2.7 points) using kinematic data of a well-characterized sample of N = 57 patients during levodopa challenge tests. The proposed model was able to explain how kinematic movements are associated with each FOG severity level that were highly consistent with the features, in which movement disorders specialists are trained to identify as characteristics of freezing. Overall, we demonstrate that deep learning models’ capability to capture complex movement patterns in kinematic data can automatically and objectively score FOG with high accuracy. These models have the potential to discover novel kinematic biomarkers for FOG that can be used for hypothesis generation and potentially as clinical trial outcome measures.
format Online
Article
Text
id pubmed-9968199
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99681992023-02-27 An Explainable Spatial-Temporal Graphical Convolutional Network to Score Freezing of Gait in Parkinsonian Patients Kwon, Hyeokhyen Clifford, Gari D. Genias, Imari Bernhard, Doug Esper, Christine D. Factor, Stewart A. McKay, J. Lucas Sensors (Basel) Article Freezing of gait (FOG) is a poorly understood heterogeneous gait disorder seen in patients with parkinsonism which contributes to significant morbidity and social isolation. FOG is currently measured with scales that are typically performed by movement disorders specialists (i.e., MDS-UPDRS), or through patient completed questionnaires (N-FOG-Q) both of which are inadequate in addressing the heterogeneous nature of the disorder and are unsuitable for use in clinical trials The purpose of this study was to devise a method to measure FOG objectively, hence improving our ability to identify it and accurately evaluate new therapies. A major innovation of our study is that it is the first study of its kind that uses the largest sample size (>30 h, N = 57) in order to apply explainable, multi-task deep learning models for quantifying FOG over the course of the medication cycle and at varying levels of parkinsonism severity. We trained interpretable deep learning models with multi-task learning to simultaneously score FOG (cross-validated F1 score 97.6%), identify medication state (OFF vs. ON levodopa; cross-validated F1 score 96.8%), and measure total PD severity (MDS-UPDRS-III score prediction error ≤ 2.7 points) using kinematic data of a well-characterized sample of N = 57 patients during levodopa challenge tests. The proposed model was able to explain how kinematic movements are associated with each FOG severity level that were highly consistent with the features, in which movement disorders specialists are trained to identify as characteristics of freezing. Overall, we demonstrate that deep learning models’ capability to capture complex movement patterns in kinematic data can automatically and objectively score FOG with high accuracy. These models have the potential to discover novel kinematic biomarkers for FOG that can be used for hypothesis generation and potentially as clinical trial outcome measures. MDPI 2023-02-04 /pmc/articles/PMC9968199/ /pubmed/36850363 http://dx.doi.org/10.3390/s23041766 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kwon, Hyeokhyen
Clifford, Gari D.
Genias, Imari
Bernhard, Doug
Esper, Christine D.
Factor, Stewart A.
McKay, J. Lucas
An Explainable Spatial-Temporal Graphical Convolutional Network to Score Freezing of Gait in Parkinsonian Patients
title An Explainable Spatial-Temporal Graphical Convolutional Network to Score Freezing of Gait in Parkinsonian Patients
title_full An Explainable Spatial-Temporal Graphical Convolutional Network to Score Freezing of Gait in Parkinsonian Patients
title_fullStr An Explainable Spatial-Temporal Graphical Convolutional Network to Score Freezing of Gait in Parkinsonian Patients
title_full_unstemmed An Explainable Spatial-Temporal Graphical Convolutional Network to Score Freezing of Gait in Parkinsonian Patients
title_short An Explainable Spatial-Temporal Graphical Convolutional Network to Score Freezing of Gait in Parkinsonian Patients
title_sort explainable spatial-temporal graphical convolutional network to score freezing of gait in parkinsonian patients
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9968199/
https://www.ncbi.nlm.nih.gov/pubmed/36850363
http://dx.doi.org/10.3390/s23041766
work_keys_str_mv AT kwonhyeokhyen anexplainablespatialtemporalgraphicalconvolutionalnetworktoscorefreezingofgaitinparkinsonianpatients
AT cliffordgarid anexplainablespatialtemporalgraphicalconvolutionalnetworktoscorefreezingofgaitinparkinsonianpatients
AT geniasimari anexplainablespatialtemporalgraphicalconvolutionalnetworktoscorefreezingofgaitinparkinsonianpatients
AT bernharddoug anexplainablespatialtemporalgraphicalconvolutionalnetworktoscorefreezingofgaitinparkinsonianpatients
AT esperchristined anexplainablespatialtemporalgraphicalconvolutionalnetworktoscorefreezingofgaitinparkinsonianpatients
AT factorstewarta anexplainablespatialtemporalgraphicalconvolutionalnetworktoscorefreezingofgaitinparkinsonianpatients
AT mckayjlucas anexplainablespatialtemporalgraphicalconvolutionalnetworktoscorefreezingofgaitinparkinsonianpatients
AT kwonhyeokhyen explainablespatialtemporalgraphicalconvolutionalnetworktoscorefreezingofgaitinparkinsonianpatients
AT cliffordgarid explainablespatialtemporalgraphicalconvolutionalnetworktoscorefreezingofgaitinparkinsonianpatients
AT geniasimari explainablespatialtemporalgraphicalconvolutionalnetworktoscorefreezingofgaitinparkinsonianpatients
AT bernharddoug explainablespatialtemporalgraphicalconvolutionalnetworktoscorefreezingofgaitinparkinsonianpatients
AT esperchristined explainablespatialtemporalgraphicalconvolutionalnetworktoscorefreezingofgaitinparkinsonianpatients
AT factorstewarta explainablespatialtemporalgraphicalconvolutionalnetworktoscorefreezingofgaitinparkinsonianpatients
AT mckayjlucas explainablespatialtemporalgraphicalconvolutionalnetworktoscorefreezingofgaitinparkinsonianpatients