Cargando…
Maternal Serum tRNA-Derived Fragments (tRFs) as Potential Candidates for Diagnosis of Fetal Congenital Heart Disease
Background: Congenital heart disease (CHD) is one of the most predominant birth defects that causes infant death worldwide. The timely and successful surgical treatment of CHD on newborns after delivery requires accurate detection and reliable diagnosis during pregnancy. However, there are no biomar...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9968204/ https://www.ncbi.nlm.nih.gov/pubmed/36826574 http://dx.doi.org/10.3390/jcdd10020078 |
Sumario: | Background: Congenital heart disease (CHD) is one of the most predominant birth defects that causes infant death worldwide. The timely and successful surgical treatment of CHD on newborns after delivery requires accurate detection and reliable diagnosis during pregnancy. However, there are no biomarkers that can serve as an early diagnostic factor for CHD patients. tRNA-derived fragments (tRFs) have been reported to play an important role in the occurrence and progression of numerous diseases, but their roles in CHD remains unknown. Methods: High-throughput sequencing was performed on the peripheral blood of pregnant women with an abnormal fetal heart and a normal fetal heart, and 728 differentially expressed tRFs/tiRNAs were identified, among which the top 18 tRFs/tiRNAs were selected as predictive biomarkers of CHD. Then, a quantitative reverse transcriptase polymerase chain reaction verified the expression of tRFs/tiRNAs in more clinical samples, and the correlation between tRFs/tiRNAs abnormalities and CHD was analyzed. Results: tRF-58:74-Gly-GCC-1 and tiRNA-1:35-Leu-CAG-1-M2 may be promising biomarkers. Through further bioinformatics analysis, we predicted that TRF-58:744-GLy-GCC-1 could induce CHD by influencing biological metabolic processes. Conclusions: Our results provide a theoretical basis for the abnormally expressed tRF-58:74-Gly-GCC-1 in maternal peripheral blood as a new potential biomarker for the accurate diagnosis of CHD during pregnancy. |
---|