Cargando…

Theoretical investigation of the MXene precursors Mo(x)V(4-x)AlC(3) (0 ≤ x ≤ 4)

By first-principles total-energy calculations, we investigated the thermodynamic stability of the MAX solid solution Mo(x)V(4-x)AlC(3) in the 0 ≤ x ≤ 4 range. Results evidence that lattice parameter a increases as a function of Mo content, while the c parameter reaches its maximum expansion at x = 2...

Descripción completa

Detalles Bibliográficos
Autores principales: Moreno-Armenta, Ma. Guadalupe, Guerrero-Sánchez, J., Gutiérrez-Ojeda, S. J., Fernández-Escamilla, H. N., Hoat, D. M., Ponce-Pérez, R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9968326/
https://www.ncbi.nlm.nih.gov/pubmed/36841864
http://dx.doi.org/10.1038/s41598-023-30443-z
Descripción
Sumario:By first-principles total-energy calculations, we investigated the thermodynamic stability of the MAX solid solution Mo(x)V(4-x)AlC(3) in the 0 ≤ x ≤ 4 range. Results evidence that lattice parameter a increases as a function of Mo content, while the c parameter reaches its maximum expansion at x = 2.5. After that, a contraction is noticed. Mo occupies V(I) sites randomly until the out-of-plane ordered Mo(2)V(2)AlC(3) alloy is formed. We employed the Defect Formation Energy (DFE) formalism to evaluate the thermodynamic stability of the alloys. Calculations show five stable compounds. At V-rich conditions and from Mo-rich to Mo-moderated conditions, the pristine V(4)AlC(3) MAX is stable. In the region of V-poor conditions, from Mo-rich to Mo-moderated growth conditions, the solid solutions with x = 0.5, 1, and 1.5 and the o-MAX Mo(2)V(2)AlC(3) are thermodynamically stable. The line profiles of the Electron Localization Function and Bader charge analysis show that the V-C interaction is mainly ionic, while the Mo-C is covalent. Also, the exfoliation energy to obtain a MXene layer is ~ 0.4 eV/Å(2). DFE also shows that MXenes exfoliated from the MAX phase with the same Mo content and atomic arrangement are thermodynamically stable. Our results get a deeper atomic scale understanding of the previously reported experimental evidence.