Cargando…
Variational quantum approximate support vector machine with inference transfer
A kernel-based quantum classifier is the most practical and influential quantum machine learning technique for the hyper-linear classification of complex data. We propose a Variational Quantum Approximate Support Vector Machine (VQASVM) algorithm that demonstrates empirical sub-quadratic run-time co...
Autores principales: | Park, Siheon, Park, Daniel K., Rhee, June-Koo Kevin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9968349/ https://www.ncbi.nlm.nih.gov/pubmed/36841841 http://dx.doi.org/10.1038/s41598-023-29495-y |
Ejemplares similares
-
Photon-counting statistics-based support vector machine with multi-mode photon illumination for quantum imaging
por: Kim, Jin-Woo, et al.
Publicado: (2022) -
Ranking Support Vector Machine with Kernel Approximation
por: Chen, Kai, et al.
Publicado: (2017) -
Universal expressiveness of variational quantum classifiers and quantum kernels for support vector machines
por: Jäger, Jonas, et al.
Publicado: (2023) -
Approximate entropy and support vector machines for electroencephalogram signal classification
por: Zhang, Zhen, et al.
Publicado: (2013) -
Gradient Regularization as Approximate Variational Inference
por: Unlu, Ali, et al.
Publicado: (2021)