Cargando…
ABT-MPNN: an atom-bond transformer-based message-passing neural network for molecular property prediction
Graph convolutional neural networks (GCNs) have been repeatedly shown to have robust capacities for modeling graph data such as small molecules. Message-passing neural networks (MPNNs), a group of GCN variants that can learn and aggregate local information of molecules through iterative message-pass...
Autores principales: | Liu, Chengyou, Sun, Yan, Davis, Rebecca, Cardona, Silvia T., Hu, Pingzhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9968697/ https://www.ncbi.nlm.nih.gov/pubmed/36843022 http://dx.doi.org/10.1186/s13321-023-00698-9 |
Ejemplares similares
-
graphDelta: MPNN Scoring Function for the Affinity
Prediction of Protein–Ligand Complexes
por: Karlov, Dmitry S., et al.
Publicado: (2020) -
Robust deep learning based protein sequence design using ProteinMPNN
por: Dauparas, J., et al.
Publicado: (2022) -
Deep clustering of small molecules at large-scale via variational autoencoder embedding and K-means
por: Hadipour, Hamid, et al.
Publicado: (2022) -
Flexible Dual-Branched Message-Passing Neural Network
for a Molecular Property Prediction
por: Jo, Jeonghee, et al.
Publicado: (2022) -
Knowledge-Embedded Message-Passing Neural Networks:
Improving Molecular Property Prediction with Human Knowledge
por: Hasebe, Tatsuya
Publicado: (2021)