Cargando…
Riemannian geometry-based metrics to measure and reinforce user performance changes during brain-computer interface user training
Despite growing interest and research into brain-computer interfaces (BCI), their usage remains limited outside of research laboratories. One reason for this is BCI inefficiency, the phenomenon where a significant number of potential users are unable to produce machine-discernible brain signal patte...
Autores principales: | Ivanov, Nicolas, Chau, Tom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9968793/ https://www.ncbi.nlm.nih.gov/pubmed/36860616 http://dx.doi.org/10.3389/fncom.2023.1108889 |
Ejemplares similares
-
Corrigendum: Riemannian geometry-based metrics to measure and reinforce user performance changes during brain-computer interface user training
por: Ivanov, Nicolas, et al.
Publicado: (2023) -
Long-Term BCI Training of a Tetraplegic User: Adaptive Riemannian Classifiers and User Training
por: Benaroch, Camille, et al.
Publicado: (2021) -
Spectral Transfer Learning Using Information Geometry for a User-Independent Brain-Computer Interface
por: Waytowich, Nicholas R., et al.
Publicado: (2016) -
Active Brain-Computer Interfacing for Healthy Users
por: Shishkin, Sergei L.
Publicado: (2022) -
User’s Self-Prediction of Performance in Motor Imagery Brain–Computer Interface
por: Ahn, Minkyu, et al.
Publicado: (2018)