Cargando…
Machine learning-based prediction of candidate gene biomarkers correlated with immune infiltration in patients with idiopathic pulmonary fibrosis
OBJECTIVE: This study aimed to identify candidate gene biomarkers associated with immune infiltration in idiopathic pulmonary fibrosis (IPF) based on machine learning algorithms. METHODS: Microarray datasets of IPF were extracted from the Gene Expression Omnibus (GEO) database to screen for differen...
Autores principales: | Zhang, Yufeng, Wang, Cong, Xia, Qingqing, Jiang, Weilong, Zhang, Huizhe, Amiri-Ardekani, Ehsan, Hua, Haibing, Cheng, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9968813/ https://www.ncbi.nlm.nih.gov/pubmed/36860337 http://dx.doi.org/10.3389/fmed.2023.1001813 |
Ejemplares similares
-
Danggui Buxue Decoction Ameliorates Idiopathic Pulmonary Fibrosis through MicroRNA and Messenger RNA Regulatory Network
por: Zhang, Huizhe, et al.
Publicado: (2022) -
A novel defined cuproptosis-related gene signature for predicting the prognosis of lung adenocarcinoma
por: Zhang, Huizhe, et al.
Publicado: (2022) -
Identifying potential biomarkers of idiopathic pulmonary fibrosis through machine learning analysis
por: Wu, Zenan, et al.
Publicado: (2023) -
Blood Biomarkers in Idiopathic Pulmonary Fibrosis
por: Guiot, Julien, et al.
Publicado: (2017) -
Identification of the lipid biomarkers from plasma in idiopathic pulmonary fibrosis by Lipidomics
por: Yan, Feng, et al.
Publicado: (2017)