Cargando…
Knowledge grounded medical dialogue generation using augmented graphs
Smart healthcare systems that make use of abundant health data can improve access to healthcare services, reduce medical costs and provide consistently high-quality patient care. Medical dialogue systems that generate medically appropriate and human-like conversations have been developed using vario...
Autores principales: | Varshney, Deeksha, Zafar, Aizan, Behera, Niranshu Kumar, Ekbal, Asif |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9969034/ https://www.ncbi.nlm.nih.gov/pubmed/36849466 http://dx.doi.org/10.1038/s41598-023-29213-8 |
Ejemplares similares
-
EmoKbGAN: Emotion controlled response generation using Generative Adversarial Network for knowledge grounded conversation
por: Varshney, Deeksha, et al.
Publicado: (2023) -
Neural response generation for task completion using conversational knowledge graph
por: Ahmad, Zishan, et al.
Publicado: (2023) -
GenPADS: Reinforcing politeness in an end-to-end dialogue system
por: Mishra, Kshitij, et al.
Publicado: (2023) -
Natural Language Generation Using Transformer Network in an Open-Domain Setting
por: Varshney, Deeksha, et al.
Publicado: (2020) -
EAGS: An extracting auxiliary knowledge graph model in multi-turn dialogue generation
por: Ning, Bo, et al.
Publicado: (2022)