Cargando…
Impact and mitigation of sampling bias to determine viral spread: Evaluating discrete phylogeography through CTMC modeling and structured coalescent model approximations
Bayesian phylogeographic inference is a powerful tool in molecular epidemiological studies, which enables reconstruction of the origin and subsequent geographic spread of pathogens. Such inference is, however, potentially affected by geographic sampling bias. Here, we investigated the impact of samp...
Autores principales: | Layan, Maylis, Müller, Nicola F, Dellicour, Simon, De Maio, Nicola, Bourhy, Hervé, Cauchemez, Simon, Baele, Guy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9969415/ https://www.ncbi.nlm.nih.gov/pubmed/36860641 http://dx.doi.org/10.1093/ve/vead010 |
Ejemplares similares
-
Mathematical modelling and phylodynamics for the study of dog rabies dynamics and control: A scoping review
por: Layan, Maylis, et al.
Publicado: (2021) -
Correction: Mathematical modelling and phylodynamics for the study of dog rabies dynamics and control: A scoping review
por: Layan, Maylis, et al.
Publicado: (2023) -
New Routes to Phylogeography: A Bayesian Structured Coalescent Approximation
por: De Maio, Nicola, et al.
Publicado: (2015) -
On the Use of Phylogeographic Inference to Infer the Dispersal History of Rabies Virus: A Review Study
por: Nahata, Kanika D., et al.
Publicado: (2021) -
The Structured Coalescent and Its Approximations
por: Müller, Nicola F., et al.
Publicado: (2017)