Cargando…
Construction of a Gaussian Process Regression Model of Formamide for Use in Molecular Simulations
[Image: see text] FFLUX, a novel force field based on quantum chemical topology, can perform molecular dynamics simulations with flexible multipole moments that change with geometry. This is enabled by Gaussian process regression machine learning models, which accurately predict atomic energies and...
Autores principales: | Brown, Matthew L., Skelton, Jonathan M., Popelier, Paul L. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9969515/ https://www.ncbi.nlm.nih.gov/pubmed/36756842 http://dx.doi.org/10.1021/acs.jpca.2c06566 |
Ejemplares similares
-
Producing chemically accurate atomic Gaussian process regression models by active learning for molecular simulation
por: Burn, Matthew J., et al.
Publicado: (2022) -
Application of
the FFLUX Force Field to Molecular
Crystals: A Study of Formamide
por: Brown, Matthew L., et al.
Publicado: (2023) -
Gaussian Process
Regression Models for Predicting
Atomic Energies and Multipole Moments
por: Burn, Matthew J., et al.
Publicado: (2023) -
Regression with Gaussian Processes
por: Kalia, Saarik
Publicado: (2016) -
The pitfalls of using Gaussian Process Regression for normative modeling
por: Xu, Bohan, et al.
Publicado: (2021)